Learning Semantic Parsers from Denotations with Latent Structured Alignments and Abstract Programs

Bailin Wang, Ivan Titov, Mirella Lapata


Abstract
Semantic parsing aims to map natural language utterances onto machine interpretable meaning representations, aka programs whose execution against a real-world environment produces a denotation. Weakly-supervised semantic parsers are trained on utterance-denotation pairs treating programs as latent. The task is challenging due to the large search space and spuriousness of programs which may execute to the correct answer but do not generalize to unseen examples. Our goal is to instill an inductive bias in the parser to help it distinguish between spurious and correct programs. We capitalize on the intuition that correct programs would likely respect certain structural constraints were they to be aligned to the question (e.g., program fragments are unlikely to align to overlapping text spans) and propose to model alignments as structured latent variables. In order to make the latent-alignment framework tractable, we decompose the parsing task into (1) predicting a partial “abstract program” and (2) refining it while modeling structured alignments with differential dynamic programming. We obtain state-of-the-art performance on the WikiTableQuestions and WikiSQL datasets. When compared to a standard attention baseline, we observe that the proposed structured-alignment mechanism is highly beneficial.
Anthology ID:
D19-1391
Volume:
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
Month:
November
Year:
2019
Address:
Hong Kong, China
Editors:
Kentaro Inui, Jing Jiang, Vincent Ng, Xiaojun Wan
Venues:
EMNLP | IJCNLP
SIG:
SIGDAT
Publisher:
Association for Computational Linguistics
Note:
Pages:
3774–3785
Language:
URL:
https://aclanthology.org/D19-1391
DOI:
10.18653/v1/D19-1391
Bibkey:
Cite (ACL):
Bailin Wang, Ivan Titov, and Mirella Lapata. 2019. Learning Semantic Parsers from Denotations with Latent Structured Alignments and Abstract Programs. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3774–3785, Hong Kong, China. Association for Computational Linguistics.
Cite (Informal):
Learning Semantic Parsers from Denotations with Latent Structured Alignments and Abstract Programs (Wang et al., EMNLP-IJCNLP 2019)
Copy Citation:
PDF:
https://aclanthology.org/D19-1391.pdf
Code
 berlino/weaksp_em19
Data
WikiTableQuestions