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Abstract

Supervised learning models often perform
poorly at low-shot tasks, i.e. tasks for which
little labeled data is available for training. One
prominent approach for improving low-shot
learning is to use unsupervised pre-trained
neural models. Another approach is to ob-
tain richer supervision by collecting anno-
tator rationales (explanations supporting la-
bel annotations). In this work, we com-
bine these two approaches to improve low-
shot text classification with two novel meth-
ods: a simple bag-of-words embedding ap-
proach; and a more complex context-aware
method, based on the BERT model. In ex-
periments with two English text classification
datasets, we demonstrate substantial perfor-
mance gains from combining pre-training with
rationales. Furthermore, our investigation of
a range of train-set sizes reveals that the sim-
ple bag-of-words approach is the clear top
performer when there are only a few dozen
training instances or less, while more complex
models, such as BERT or CNN, require more
training data to shine.

1 Introduction

When trained on large amounts of labeled data,
supervised machine learning models demonstrate
impressive performance in various domains rang-
ing from text classification to image recognition
(Yogatama et al., 2017; Krizhevsky et al., 2012).
In many domains, however, labeled data is diffi-
cult to obtain. This might be due to annotation
cost, or simply because there are no available in-
stances to annotate before the system has to make
the next classification decision. Imagine, for ex-
ample, a personalized email tagger, where new tag
types can be created and then used for annotation
by the user at any time. When only little training is
available, model performance drops dramatically.

Various methods have been proposed to opti-
mize machine learning models trained on little
data with the goal of improving performance for a
given train set size or reducing the number of train-
ing instances that need to be collected. One of the
most prominent for text classification (and other
NLP tasks) is transfer learning from unsupervised
data, or unsupervised pre-training. This approach
has been widely adopted with the introduction
of pre-trained word embeddings (Mikolov et al.,
2013; Joulin et al., 2017). Word type represen-
tations have subsequently been extended with pre-
trained, context-dependent representations achiev-
ing strong results across a wide range of NLP tasks
(Melamud et al., 2016; Peters et al., 2018; Howard
and Ruder, 2018). A recent strong performer in
this line of research is BERT (Devlin et al., 2018),
a multi-layer attention-based neural model that is
pre-trained on large amounts of plain text and then
fine tuned to specific tasks. Systems using BERT
have achieved state-of-the-art performance on var-
ious NLP tasks, including short text classification.

Another approach for training text classifiers
with few labeled instances is to supplement the
class labels with annotation rationales. Annota-
tion rationales for text are usually specific subse-
quences of words within a text instance that the an-
notator considers to be evidence supporting the la-
bel assignment. Zaidan et al. (2007) were the first
to investigate the use of annotator rationales for
training text classifiers. They obtained manual ra-
tionales for an IMDB movie review dataset (Pang
et al., 2002) and showed that an SVM classifier
can be modified to obtain improved accuracy us-
ing these rationales. The bold text in the movie re-
view snippet “perhaps the greatest element to the
film is its constant surprises and unpredictabil-
ity” is one example of an annotated rationale in
this dataset. Abedin et al. (2011) showed similar
results using SVM and rationales for classifying
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cause identifiers in aviation safety reports from the
Aviation Safety Reporting System (ASRS).

In this work, we combine the power of unsu-
pervised pre-training with the fine-grained guid-
ance from rationales to propose two novel low-
shot text classification methods. Both methods
promote rationale-like features in the input to im-
prove the classification outcome. The first method
uses rationale supervision to bias a simple bag-of-
words text embedding towards the more discrim-
inative features. In the second method, we show
how to fine-tune a pre-trained BERT model with
both instance labels and rationales jointly. An in-
vestigation across a range of train-set sizes on the
IMDB and ASRS text classification datasets re-
veals that our bag-of-words approach substantially
outperforms all baselines for train sets of up to a
few dozen instances. For larger sizes, our BERT-
based model and a CNN baseline perform the best.
Our code is publicly available. 1

2 Related Work

As mentioned in the Introduction, Zaidan et al.
(2007) was the first work to show how manual ra-
tionales annotated for movie reviews (Pang et al.,
2002) can be used to improve classifier accuracy.
They also investigated the annotation effort rami-
fications and found that the additional annotation
of a few rationales per instance on top of the stan-
dard label annotation roughly doubled annotation
time. When enough instances are readily avail-
able for annotation, this information is important
to assess the trade-off between obtaining annota-
tor rationales and obtaining standard labeled in-
stances. However, we note that there are cases
where more unlabeled instances may not be avail-
able and then obtaining annotator rationales may
be the only way to improve the classifier accuracy.

The model most closely related to our rationale-
biased bag-of-words is the one proposed by
Sharma and Bilgic (2018) (denoted RA-SVM in
Section 5.2). It biases the input representation by
adjusting feature weights in a way that is agnos-
tic to the type of classifier used. More specifically,
it uses one-hot word features and performs sim-
ple fixed discounting of non-rationale word fea-
ture weights during training only. In contrast, our
model learns a rationale-biased embedded repre-
sentation of texts and this representation is used

1 https://github.com/mihaela-bornea/
low-shot-text-classification

both at train and test time.
The model most closely related to our rationale-

biased BERT model is the one proposed by
Zhang et al. (2016) (denoted RA-CNN in Sec-
tion 5.2). This model uses a CNN sentence en-
coder with pre-trained word embeddings. It fol-
lows a two-step approach, where one sentence
classifier is trained to identify sentences contain-
ing rationales and weigh them higher in an overall
‘weighted-average-of-sentences’ document repre-
sentation. Then a second classifier is trained to
make the final label prediction based on that repre-
sentation. They showed improved accuracy com-
pared to non-rationale-augmented CNNs as well
as to rationale-augmented SVM models. Our main
contributions relative to that work are the introduc-
tion of the joint-learning technique, which learns
text classification and rationale words identifica-
tion concurrently, and the adaptation of the en-
tire approach to BERT. The ability of our model
to identify rationale spans within sentences also
seems useful for interpretability. Tepper et al.
(2013) also chose a two-step approach similar to
Zhang et al. (2016) using more traditional classi-
fiers with sparse features. They train one classifier
to identify rationale-like pieces of text and then a
second classifier is trained to label input instances
taking only the rationale-like texts into account.

Finally, few-shot learning methods attempt to
learn how to effectively train classifiers for new
classes with only few labeled instances, using
techniques commonly referred to as meta-learning
(Snell et al., 2017; Yu et al., 2018). Snell et al.
(2017), for example, learn an embedding func-
tion that is used to represent the input instances
such that simple nearest-prototype classifiers can
be trained effectively to recognise instances of a
new target class after being exposed to a small
number of labeled examples. Although a new
class is learned from few labeled instances as in
our work, the preceding meta-learning process re-
lies on a large number of labeled instances aggre-
gated over many closely related classes or tasks.
This is an important distinction from our low-shot
setting.

3 Rationale-biased Bag-of-words

In this section, we describe our proposed
rationale-biased bag-of-words method for per-
forming low-shot text classification with ratio-
nales.

https://github.com/mihaela-bornea/low-shot-text-classification
https://github.com/mihaela-bornea/low-shot-text-classification
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3.1 Rationale-biased representation
Let ~v be a vector representation of word v (either
one-hot or a low-dimensional embedding). We
represent a text instance t = (v1, .., vn) as an L2-
normalized, weighted average of its words giving
the text embedding function:

emb(t) = ~t =
1

Z

∑
vi∈t

wi~vi (1)

where Z is the normalization factor.
This embedding is a standard bag-of-words ap-

proach to representing texts, where weights, such
as TF-IDF, are typically used to bias the repre-
sentation towards words that carry more impor-
tant information. We hypothesize that since ra-
tionales highlight support for annotator classifica-
tion decisions, biasing this text embedding func-
tion towards rationale-like words would expose
the more discriminative features. To this end,
given a rationale-bias function frb(v) that esti-
mates the similarity between a word v and the an-
notated rationale texts in the training dataset, the
rationale biased representation could be computed
using Eq. (1) with wi = frb(vi). The remainder
of this section describes how we compute frb(v).

Let the prototype representation of a collec-
tion of text instances T = (t1, .., tm) be the L2-
normalized centroid of its text instance vectors:

prot(T ) =
1

Z

∑
ti∈T

~ti (2)

where Z is the normalization factor.
A rationale for a text instance t and class la-

bel c is any word subsequence r of t that was
annotated as evidence for the assignment of c to
t. A class rationale prototype ~Ri = prot(Ri)
is the prototype representation of the rationales
Ri = (r1, .., rl) annotated for class ci, where each
rationale instance r is embedded using Eq. (1)
with uniform weights. We define the following
rationale-bias function frb(v):

frb(v) = (exp simrb(v))
α (3)

simrb(v) = max
i∈{1..k}

cosine(~v, ~Ri)

That is, simrb(v) is the maximum cosine similar-
ity of the word vector to any of the class ratio-
nale prototypes, and frb(v) is an always positive
derivative of simrb(v) that is controlled by the hy-
perparameter α ≥ 0. Higher values of α mean
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Figure 1: The bias weights generated by a rationale-
biased model trained on 20 instances, to a snippet from
an example movie review.

stronger magnification of the impact of the ratio-
nale biases; α = 0 means that the rationale bias is
completely ignored. With this rationale-bias func-
tion, we can now compute rationale-biased rep-
resentations for text instances using Eq. (1), and
these representations can be used as inputs to any
classifier.

In early experiments, we noticed that many non-
discriminating, common words in the target do-
main (e.g., movie, certainly, guy) tended to get
high rationale biases. This is presumably due to
the fact that rationales in these datasets often have
spans that include multiple rationale words along
with other words. To compensate, we adjusted the
class rationale prototype representation to:

adjusted(Ri) = prot(Ri)− prot(Tall) (4)

where Tall is the collection of all training instances
across all classes. That is, we subtract the entire
training-set prototype vector from each class ra-
tionale prototype. We L2-normalize this represen-
tation as well.

Figure 1 is an example illustrating actual bias
weights generated by our model. As can be seen
in this case, the most positive and negative indica-
tive words are ‘picked up’ as indicated by the high
respective bias. However, it should also be noted
that this model misses the sentiment polarity in-
version expressed by the word despite, due to its
simple sequence-agnostic nature.

3.2 Classifiers
Various types of classifiers can be trained to per-
form text classification on top of the rationale-
biased text representations described in the previ-
ous section. We chose to experiment with a stan-
dard SVM classifier as well as a simple, nearest-
prototype classifier similar to the approach taken
in prior few-shot learning work (Snell et al., 2017).
Before training and applying these classifiers, we
compute the class rationale prototypes to deter-
mine the rationale-bias function frb. We then use
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that function to embed all of the dataset text in-
stances and use these text embeddings as inputs to
the classifiers. More specifically, for our nearest-
prototype classifier, given a training set of text in-
stance collections T1, .., Tk labeled with classes
c1, .., ck, we represent each class ci by the class
prototype ~Ti = prot(Ti). To classify a new text
instance t′ we simply choose the closest class pro-
totype using cosine similarity:

class(t′) = argmax
i∈{1..k}

cosine(~t′, ~Ti) (5)

Our hypothesis is that this proposed method
would do comparatively well with very little train-
ing data because (a) with the guidance of the ratio-
nale bias it could pick up individual discriminative
words more quickly (e.g., good or bad for senti-
ment tasks); (b) combining the use of pre-trained
word embeddings as the underlying word repre-
sentation with rationale bias would help generalize
to words unseen in the training data (e.g. to best
from good) and would facilitate an effective ratio-
nale bias similarity function simrb(v); and (c) the
training regimen is simple with a relatively small
number of parameters to be learned compared to
some more complex neural models such as the one
discussed in the following section.

4 Rationale-biased BERT

BERT (Devlin et al., 2018) is a context-aware neu-
ral network model that has shown excellent re-
sults when used as a basis for various supervised
NLP systems. Its power comes from transfer-
ring context-aware language modeling informa-
tion learned from unsupervised training over very
large amounts of plain text. In this section, we
show how we adapt BERT to handle long texts and
then to incorporate rationale supervision together
with standard instance labels.

4.1 Fine-tuning BERT
Presented with a sequence of word tokens2 s =
(a1, ..an) as input, a BERT model outputs contex-
tualized vector encodings for each token B(s) =
(h0, h1, .., hn),3 where h0 is a special encoding
for the entire sequence. Pre-trained versions of
this model were trained by Devlin et al. (2018)
against language modeling and sentence predic-
tion objectives on large corpora of text allowing

2BERT breaks words into subword units called word
pieces (Wu et al., 2016).

3We refer here to the top-most output layer of BERT.

them to capture valuable contextualized informa-
tion in these encodings. Devlin et al. (2018) ap-
plied dropout followed by a simple linear layer,
Ltok(drop(B(s)i)) where i > 0 to perform token-
level classification and Ltext(drop(B(s)0)) for
sentence-level classification. They fine-tuned the
entire model on task-specific labels using a stan-
dard cross-entropy loss function. With this ap-
proach, they achieved state-of-the-art results on
various NLP tasks, such as Named Entity Recog-
nition (token-level) and single-sentence sentiment
classification (sentence-level).

4.2 Averaged BERT classifier for long texts
While BERT proved to be very effective for clas-
sifying short texts such as individual sentences,
its computational complexity is quadratic with the
length of the input text yielding long run times for
texts longer than a few sentences. Since our input
texts may be long, we split them into sentences,
apply BERT to each of the sentences separately
and average the outputs as follows.

Given a text instance comprising the set of
sentences t = (s1, ..., sm), we encode it as the
weighted average of the individual sentences:

Bavg(t) = ~t =
∑
i∈1..m

wi · drop(B(si)0) (6)

where wi are the weights used in the weighted av-
erage. We experiment with uniform weights and
also with learning weights as learned attention, us-
ing a linear layer Lattn:

wi = softmax(Lattn(drop(B(si)0))) (7)

Finally, similar to the original BERT approach,
to fine tune a classifier for long text instances,
we apply a linear layer to the text encoding
Ltext(Bavg(t)) and train the whole model to pre-
dict the target labels with the loss function:

Starget(t, lt) = CE(Ltext(Bavg(t)), lt) (8)

where lt is the training label for text instance t and
CE is the cross-entropy loss function. Figure 2
illustrates our architecture.

4.3 Rationale-biased BERT classifiers
We propose two methods to incorporate rationale
supervision into our averaged BERT text classi-
fier. The first is based on straightforward multi-
task learning, where rationale word prediction is
considered an auxiliary task that is jointly trained
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Figure 2: Averaged BERT model architecture. The
three BERT boxes refer to the same single instance
of the model. Lattn is the optional sentence attention
learning component from Eq. (7).
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Figure 3: Rationale-bias auxiliary model component.
The BERT model here is the same one used for the
main target task. wi is the average probability that a
token in the sentence is part of a rationale, which can
be used as sentence attention in the averaged BERT.

with the main text label prediction task. The sec-
ond extends the first by using rationale supervision
to estimate the attention to each sentence. It then
uses that attention (or importance measure) to in-
form the weighted average from Eq. (6).

Simple joint learning. Figure 3 illustrates the
auxiliary model added to the averaged BERT. The
same BERT model is trained to perform two clas-
sification tasks: (1) predicting the label of each
text instance (target text classification task); and
(2) predicting for every input token in every input
sentence whether it is part of an annotated ratio-
nale subsequence (auxiliary task). This is achieved
by introducing the auxiliary loss function:

Saux(t, lr) = (9)
1

n

∑
i,j

CE(Ltok(drop(B(si)j)), l
i,j
r )

where li,jr is the rationale label of token j in sen-
tence i, Ltok is a linear layer for learning to clas-
sify tokens and n is the total number of tokens in
text t. Finally, the multi-task objective function
per input text t is:

Sjoint(t, lt, lr) = Starget(t, lt)+Saux(t, lr) (10)

Our hypothesis is that the auxiliary task will
infuse lower-level information regarding the rele-
vance of input words into the BERT model, which
will help boost the main task classifier.4

4In early experiments, we also tried infusing this infor-
mation to lower layers of the BERT model (i.e., to an inter-
nal layer rather than the output layer) following Søgaard and
Goldberg (2016), but that did not improve the performance.

Rationale-biased Attention. The dotted lines
in Figure 3 illustrate our proposed approach to
extend simple joint-learning by using the ratio-
nale signal to learn how to identify the more im-
portant sentences in the input text. To train this
model, we use the same multi-task loss function
in Eq. (10). However, this time, instead of using
uniform weights in the averaged BERT, we con-
sider the attention weight of a sentence to be the
average of the probabilities that each of its tokens
is in a rationale span. These weights are used to
compute the final weighted average representation
of the text input in Eq. (6). In our experiments, we
found that it was better not to backpropagate the
error from Starget towards the token-level ratio-
nale classifier (i.e. along the dotted lines). There-
fore, the rationale classifier is still trained only
based on Saux.

The hypothesis here is that this model could be
successful by infusing more explicitly the induc-
tive bias that sentences with rationale words are
more important than others for the final classifica-
tion task. Incorporating more inductive bias is par-
ticularly important with little training data. Com-
pared to the bag-of-words approach presented in
the previous section, however, we presume that
both BERT-based methods presented here might
be more challenged with extremely little train-
ing data because of the more complex underlying
models and training regimen.

Figure 4 shows an example of sentence atten-
tions and word rationale probabilities computed
by our rationale-biased attention BERT model.
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Figure 4: Excerpts from the sentence that got the high-
est attention (top) and lowest attention (bottom) in an
IMDB movie review, by our rationale-biased attention
BERT model. Bars indicate the probability the model
assigns for every word of being part of a rationale.

Being context-aware, this model captures relevant
sequences of words rather than just spotting key
words. In addition to being useful for the classifi-
cation task, these sentence and token weights also
seem useful for model interpretability.

5 Experimental Settings

We conducted experiments with two English text
classification datasets. Zaidan et al. (2007) added
rationales supporting the positive/negative class
labels on 1800 movie reviews from the Inter-
net Movie Database (IMDB) dataset (Pang et al.
(2002)). We used 900 reviews for training, 450 for
development and 450 for testing, and maintained
the original even positive/negative balance in ev-
ery split.

The Aviation Safety Reporting System (ASRS)
dataset contains reports of aviation safety inci-
dents. We used the version from Abedin et al.
(2011), which has 1233 reports in the training set,
100 for development and 1000 for testing. Reports
are labeled with one or more of 14 safety incident
cause categories. To create a binary classification
dataset comparable to the IMDB dataset, we ex-
tracted a balanced subset of reports that were la-
beled with the ‘Proficiency’ label or the ‘Physical
Environment’ label (but not both). We chose these
particular two labels because they have a similar
number of instances and are among the top most
frequent labels in the dataset. This resulted in 386
reports for training and 392 reports for testing. Ta-
ble 1 provides some additional statistics regarding
these two datasets.

IMDB ASRS
sentences per instance 33.8 15.3
words per instance 736.6 262.1
rationales per instance 8.6 3.0
words per rationale 7.2 2.2

Table 1: Dataset statistics

5.1 Experimental protocol
To test the hypothesis that our proposed rationale-
biased methods can improve classification with lit-
tle training data, we ran experiments varying the
amount of training data used from 2 instances up
to roughly 400. For each training size n, we sam-
pled n training instances to train the models and
tested on the entire dev/test set. We repeated this
experiment 30 times (for each n) and report aver-
age accuracies. We fixed all parameters based on
tuning on only the IMDB development set prior
to running on the IMDB and ASRS test data (no
tuning was done on ASRS data).

5.2 Compared methods
RA-SVM is the Rationale-Augmented SVM by
Sharma and Bilgic (2018) that biases the text
representation to rationales by discounting non-
rationale word features by a fixed discount ratio
during training. All words are TF-IDF weighted
prior to discounting. We experimented with differ-
ent discounts on the IMDB development set and
found that 0.1 gave the best results. And while
Sharma and Bilgic (2018) use a one-hot word rep-
resentation, we also experimented with giving it
dense word embeddings, but this yielded degraded
performance. We also report results with no ratio-
nale discount - a plain SVM baseline.

RA-CNN is the Rationale-Augmented CNN by
Zhang et al. (2016), described in section 2. We
used the authors’ implementation with pre-trained
word2vec Google News word embeddings with
300 dimensions for 3 million words.5 We tuned
batch size, dropout, learning rate and number of
epochs on our development set. We also report re-
sults with no rationale weighting - a plain CNN
baseline.

RB-BOW-SVM and RB-BOW-PROTO are the
SVM and nearest-prototype classifiers running on
top of our proposed rationale-biased bag-of-words
(BOW) text representation (Section 3). We tuned

5https://code.google.com/archive/p/
word2vec/

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
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the hyperparameter α on the dev set, obtaining
the best results with α = 6 for both classifiers.
BOW-PROTO is the prototype classifier based on
a BOW with no rationale bias (α = 0). We tried
both one-hot word representations and word em-
beddings using the same word2vec embeddings as
for CNN and RA-CNN.

AVG-BERT and ATTN-WAVG-BERT are our
proposed BERT-based models trained without ra-
tionales using a uniform-weight average and an
attention-based weighted average of sentences,
respectively (Section 4.2). RB-AVG-BERT is
the joint model that uses rationale prediction
as an auxiliary task, and RB-WAVG-BERT is
the method that also uses rationales to estimate
sentence-level attention (Section 4.3). For all of
the above, we used the pre-trained models ‘bert-
base-uncased’ and ‘bert-base-cased’ for the IMDB
and ASRS datasets, respectively. We used de-
fault hyperparameters, except for using learning
rate of 5e-6 and 10 epochs for fine-tuning, which
we found to work better for AVG-BERT with light
tuning. To fit the computation graphs into the GPU
memory (NVIDIA Tesla V100) we trimmed sen-
tences longer than 48 word pieces, and texts con-
taining more than 64 sentences. We implemented
our models using a PyTorch implementation of
BERT.6

ULMFiT (Howard and Ruder, 2018) is a re-
cent method achieving state-of-the-art text classi-
fication results on several datasets. It is trained in
three steps: (1) training a general-domain recur-
rent neural network language model on a large cor-
pus (WikiText-103); (2) fine-tuning the language
model to the domain data of the target task disre-
garding class labels; and (3) fine-tuning a classifier
for the task using the encoder of the learned fine-
tuned language model as a starting point. We used
the fast.ai7 implementation of ULMFiT, tuning
batch size, dropout multiplication factor, learning
rates and number of epochs on our development
set. ULMFiT does not currently have a rationale-
augmented version.

6 Results

In this section, we start by investigating the perfor-
mance of different variants of our proposed mod-
els on the IMDB dev set. The most promising con-

6https://github.com/huggingface/
pytorch-pretrained-BERT

7https://www.fast.ai/

figurations are then evaluated on the IMDB and
ASRS test sets. Since both of our datasets are bi-
nary and balanced we note that the random base-
line accuracy is 50%.

6.1 Development set investigation

To demonstrate the contribution of various com-
ponents of our rationale-biased bag-of-words
approach, we performed several ablation ex-
periments on the development set, shown in
Figure 5. The compared variants include:
RB-BOW-PROTO: our full method with pre-
trained word embeddings; BOW-PROTO: no
rationale-bias; OH: RB-BOW-PROTO with one-
hot word representations instead of word embed-
dings; NO-ADJUST: RB-BOW-PROTO without
discounting common words by subtracting the
general prototype vector (Eq. (4)); SINGLE: RB-
BOW-PROTO with just a single rationale proto-
type representing all rationales instead of one ra-
tionale prototype for each class (Eq. (3)); and IN-
STANCE: RB-BOW-PROTO with a rationale pro-
totype for every individual text instance instead
of one per class. As can be seen, combining
the use of pre-training and rationales is critical
to the success of our full method. First, the im-
portance of using pre-trained word embeddings
is evident by the significant drop in performance
when using one-hot encodings with train-sets with
60 instances or fewer. Second, the importance of
rationale-biasing can be seen by the large perfor-
mance drop with BOW-PROTO across all train-
set sizes. With those two components in place,
we see that the RB-BOW-PROTO is able to per-
form significantly above the 50% random baseline
with very few training instances. We note that RB-
BOW-SVM demonstrated similar performance to
RB-BOW-PROTO. For brevity, we don’t include
a detailed report here, but do include RB-BOW-
SVM in the test results section.

To illustrate the potential merit in using our
proposed rationale-biased embedding function we
show 2-dimensional plots of text embeddings with
and without rationale-bias in Figure 7. We ran-
domly sampled a train-set of size 60 from the
IMDB dataset and used it to learn the rationale-
biased embedding function. We plotted the posi-
tive and negative class prototypes as learned from
the training set as well as the embeddings of the
IMDB dev set instances. We used T-SNE to re-
duce those 300-dimensional embeddings down to

https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/huggingface/pytorch-pretrained-BERT
https://www.fast.ai/
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Figure 5: Ablation experiments on the IMDB dev set.
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Figure 6: BERT-based models on the IMDB dev set.

Figure 7: Bag-of-words text embedding without ratio-
nale bias (left) and with (right). +/o markers are posi-
tive/negative dev text instances. Large markers are pos-
itive/negative class prototypes learned during training.

two dimensions for visualization. The rationale-
biased representation appears to discriminate bet-
ter between positive and negative instances. In
particular, we notice an increase in the distance
between the representations of class prototypes
and a clearer clustering of the development set in-
stances around their respective class prototypes.
For this data subset, the nearest prototype classi-
fier achieves accuracy of 78.1% when using the
rationale-biased embedding compared to 69.7%
with an unbiased representation.

Next, we investigate the performance of the
BERT-based models on the IMDB dataset. Fig-
ure 6 shows the results on the dev set. First we
note that unlike the simpler bag-of-words meth-
ods, all of these models require at least 20 train-
ing instances before they meaningfully improve
on the random 50% baseline. On the other hand,
with 200 training instances or more, all of the
BERT-based models significantly outperform the
bag-of-words methods. More specifically, we
see that RB-AVG-BERT and RB-WAVG-BERT,
which use rationale supervision, significantly out-

perform AVG-BERT and ATTN-WAVG-BERT,
which only use text label supervision, by up to
10 accuracy points. Between RB-AVG-BERT and
RB-WAVG-BERT, the latter, which incorporates
more inductive bias, performs more robustly.

6.2 Test set results
Figure 8 and Table 2 show the IMDB test-set re-
sults of our best rationale-biased methods and their
non-rationale counterparts (chosen based on dev
set performance), as well as all of the baselines.8

Our bag-of-words models, RB-BOW-PROTO and
RB-BOW-SVM, which combine rationale-biasing
with pre-trained word embeddings, outperform all
other baselines by a large margin of up to more
than 20 absolute accuracy points for training sets
of size 20 or smaller. On these particularly small
datasets, the other rationale-aware baselines, RA-
SVM and RA-CNN, do not perform as well. For
larger training sets of size 60 and more, all systems
perform better, as expected. In particular, the more
complex CNN and BERT-based models have sig-
nificantly improved performance with more super-
vision. Both RA-CNN and our RB-BERT, which
combine pre-training with rationales, benefit sub-
stantially from rationale supervision, with up to
more than 30 absolute accuracy points improve-
ment. In absolute terms, our BERT models out-
perform their CNN counterparts and every other
baseline in this training size range.

Finally, Figure 9 and Table 3 show results on the
ASRS test set. The trends here are similar, show-
ing the robust merit in our rationale-bias approach.
The only striking difference is that in this dataset,
the CNN methods outperform our BERT-based

8ULMFiT is not included in Figures 8 and 9 for better
readability.
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Figure 8: IMDB test set results
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Figure 9: ASRS test set results

Number of Training Instances
2 6 10 20 60 200 400

RB-BOW-PROTO 53.6 63.6 68.2 75.9 80.9 82.5 82.6
RB-BOW-SVM 53.6 63.5 67.0 73.4 80.2 79.7 80.2
BOW-PROTO 50.8 55.6 58.5 62.5 70.2 71.3 71.8
RB-WAVG-BERT 51.8 53.2 52.3 58.4 81.6 90.9 92.2
AVG-BERT 50.9 53.5 52.9 58.5 70.7 83.8 86.2
RA-SVM 50.6 54 52.7 59.1 70.2 78.3 81.5
SVM 50.7 52.5 52.1 54.9 62.5 71.2 75.8
RA-CNN * * 52.6 59.8 79.9 86.2 87.3
CNN * * 52.6 54 62 79.1 83.5
ULMFiT * * * 54.7 62 71.3 78.8

Table 2: IMDB test set results.

Number of Training Instances
2 6 10 20 60 200 380

RB-BOW-PROTO 54.9 63.7 69.4 73.6 75.4 75.8 75.5
RB-BOW-SVM 54.9 61.9 68.4 73.5 76.1 76.7 76.5
BOW-PROTO 51.2 54.4 55.2 61.1 63.6 68.7 69.2
RB-WAVG-BERT 50.3 51.6 53.4 58.8 69.5 78.3 81.0
AVG-BERT 51.1 51.9 53.2 60.2 65.6 72.2 72.8
RA-SVM 52.2 52.4 55.6 58.1 62.7 62.2 63.2
SVM 51.2 51.3 52.8 55.3 62.1 69 70.9
RA-CNN * * 54.6 53 74.9 82.8 83.8
CNN * * 53.7 53 69.9 79.8 81.1
ULMFiT * * * 53.7 59.9 65.9 69.3

Table 3: ASRS test set results.

methods both in their rationale and non-rationale
versions. We note that the RA-CNN baseline takes
a similar approach to ours in the sense that it
also combines pre-training (pre-trained word em-
beddings) with rationales. The reasons for one
method being better than the other on a particular
dataset could be related to the compatibility be-
tween the pre-training corpus and the test dataset
or sensitivity to hyperparameter tuning (we did not
do any tuning on the ASRS dev set).

7 Conclusions

In this work, we addressed an important chal-
lenge in supervised machine learning, namely the
dependency on large amounts of labeled training
data. We demonstrated that substantial perfor-
mance gains in low-shot text classification can be
obtained by combining unsupervised pre-training
with annotator rationales across various methods.
To this end, we presented two novel methods that
together provide strong results on a range of train
set sizes. We performed experiments using var-

ious baselines, data sizes and ablations to help
understand what works best for varying amounts
of available training data. Most notably, we
showed that simple bag-of-words methods with
pre-trained word embeddings work best for very
small train sets, while more complex methods
based on pre-trained language models excel when
more data is available.
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