@inproceedings{kozareva-ravi-2019-proseqo,
    title = "{P}ro{S}eqo: Projection Sequence Networks for On-Device Text Classification",
    author = "Kozareva, Zornitsa  and
      Ravi, Sujith",
    editor = "Inui, Kentaro  and
      Jiang, Jing  and
      Ng, Vincent  and
      Wan, Xiaojun",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
    month = nov,
    year = "2019",
    address = "Hong Kong, China",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/D19-1402/",
    doi = "10.18653/v1/D19-1402",
    pages = "3894--3903",
    abstract = "We propose a novel on-device sequence model for text classification using recurrent projections. Our model ProSeqo uses dynamic recurrent projections without the need to store or look up any pre-trained embeddings. This results in fast and compact neural networks that can perform on-device inference for complex short and long text classification tasks. We conducted exhaustive evaluation on multiple text classification tasks. Results show that ProSeqo outperformed state-of-the-art neural and on-device approaches for short text classification tasks such as dialog act and intent prediction. To the best of our knowledge, ProSeqo is the first on-device long text classification neural model. It achieved comparable results to previous neural approaches for news article, answers and product categorization, while preserving small memory footprint and maintaining high accuracy."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kozareva-ravi-2019-proseqo">
    <titleInfo>
        <title>ProSeqo: Projection Sequence Networks for On-Device Text Classification</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Zornitsa</namePart>
        <namePart type="family">Kozareva</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Sujith</namePart>
        <namePart type="family">Ravi</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-11</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Kentaro</namePart>
            <namePart type="family">Inui</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Jing</namePart>
            <namePart type="family">Jiang</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Vincent</namePart>
            <namePart type="family">Ng</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Xiaojun</namePart>
            <namePart type="family">Wan</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Hong Kong, China</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>We propose a novel on-device sequence model for text classification using recurrent projections. Our model ProSeqo uses dynamic recurrent projections without the need to store or look up any pre-trained embeddings. This results in fast and compact neural networks that can perform on-device inference for complex short and long text classification tasks. We conducted exhaustive evaluation on multiple text classification tasks. Results show that ProSeqo outperformed state-of-the-art neural and on-device approaches for short text classification tasks such as dialog act and intent prediction. To the best of our knowledge, ProSeqo is the first on-device long text classification neural model. It achieved comparable results to previous neural approaches for news article, answers and product categorization, while preserving small memory footprint and maintaining high accuracy.</abstract>
    <identifier type="citekey">kozareva-ravi-2019-proseqo</identifier>
    <identifier type="doi">10.18653/v1/D19-1402</identifier>
    <location>
        <url>https://aclanthology.org/D19-1402/</url>
    </location>
    <part>
        <date>2019-11</date>
        <extent unit="page">
            <start>3894</start>
            <end>3903</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ProSeqo: Projection Sequence Networks for On-Device Text Classification
%A Kozareva, Zornitsa
%A Ravi, Sujith
%Y Inui, Kentaro
%Y Jiang, Jing
%Y Ng, Vincent
%Y Wan, Xiaojun
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F kozareva-ravi-2019-proseqo
%X We propose a novel on-device sequence model for text classification using recurrent projections. Our model ProSeqo uses dynamic recurrent projections without the need to store or look up any pre-trained embeddings. This results in fast and compact neural networks that can perform on-device inference for complex short and long text classification tasks. We conducted exhaustive evaluation on multiple text classification tasks. Results show that ProSeqo outperformed state-of-the-art neural and on-device approaches for short text classification tasks such as dialog act and intent prediction. To the best of our knowledge, ProSeqo is the first on-device long text classification neural model. It achieved comparable results to previous neural approaches for news article, answers and product categorization, while preserving small memory footprint and maintaining high accuracy.
%R 10.18653/v1/D19-1402
%U https://aclanthology.org/D19-1402/
%U https://doi.org/10.18653/v1/D19-1402
%P 3894-3903
Markdown (Informal)
[ProSeqo: Projection Sequence Networks for On-Device Text Classification](https://aclanthology.org/D19-1402/) (Kozareva & Ravi, EMNLP-IJCNLP 2019)
ACL
- Zornitsa Kozareva and Sujith Ravi. 2019. ProSeqo: Projection Sequence Networks for On-Device Text Classification. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3894–3903, Hong Kong, China. Association for Computational Linguistics.