@inproceedings{shang-etal-2019-semi,
title = "Semi-supervised Text Style Transfer: Cross Projection in Latent Space",
author = "Shang, Mingyue and
Li, Piji and
Fu, Zhenxin and
Bing, Lidong and
Zhao, Dongyan and
Shi, Shuming and
Yan, Rui",
editor = "Inui, Kentaro and
Jiang, Jing and
Ng, Vincent and
Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1499/",
doi = "10.18653/v1/D19-1499",
pages = "4937--4946",
abstract = "Text style transfer task requires the model to transfer a sentence of one style to another style while retaining its original content meaning, which is a challenging problem that has long suffered from the shortage of parallel data. In this paper, we first propose a semi-supervised text style transfer model that combines the small-scale parallel data with the large-scale nonparallel data. With these two types of training data, we introduce a projection function between the latent space of different styles and design two constraints to train it. We also introduce two other simple but effective semi-supervised methods to compare with. To evaluate the performance of the proposed methods, we build and release a novel style transfer dataset that alters sentences between the style of ancient Chinese poem and the modern Chinese."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shang-etal-2019-semi">
<titleInfo>
<title>Semi-supervised Text Style Transfer: Cross Projection in Latent Space</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mingyue</namePart>
<namePart type="family">Shang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Piji</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhenxin</namePart>
<namePart type="family">Fu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lidong</namePart>
<namePart type="family">Bing</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dongyan</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shuming</namePart>
<namePart type="family">Shi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rui</namePart>
<namePart type="family">Yan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Text style transfer task requires the model to transfer a sentence of one style to another style while retaining its original content meaning, which is a challenging problem that has long suffered from the shortage of parallel data. In this paper, we first propose a semi-supervised text style transfer model that combines the small-scale parallel data with the large-scale nonparallel data. With these two types of training data, we introduce a projection function between the latent space of different styles and design two constraints to train it. We also introduce two other simple but effective semi-supervised methods to compare with. To evaluate the performance of the proposed methods, we build and release a novel style transfer dataset that alters sentences between the style of ancient Chinese poem and the modern Chinese.</abstract>
<identifier type="citekey">shang-etal-2019-semi</identifier>
<identifier type="doi">10.18653/v1/D19-1499</identifier>
<location>
<url>https://aclanthology.org/D19-1499/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>4937</start>
<end>4946</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Semi-supervised Text Style Transfer: Cross Projection in Latent Space
%A Shang, Mingyue
%A Li, Piji
%A Fu, Zhenxin
%A Bing, Lidong
%A Zhao, Dongyan
%A Shi, Shuming
%A Yan, Rui
%Y Inui, Kentaro
%Y Jiang, Jing
%Y Ng, Vincent
%Y Wan, Xiaojun
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F shang-etal-2019-semi
%X Text style transfer task requires the model to transfer a sentence of one style to another style while retaining its original content meaning, which is a challenging problem that has long suffered from the shortage of parallel data. In this paper, we first propose a semi-supervised text style transfer model that combines the small-scale parallel data with the large-scale nonparallel data. With these two types of training data, we introduce a projection function between the latent space of different styles and design two constraints to train it. We also introduce two other simple but effective semi-supervised methods to compare with. To evaluate the performance of the proposed methods, we build and release a novel style transfer dataset that alters sentences between the style of ancient Chinese poem and the modern Chinese.
%R 10.18653/v1/D19-1499
%U https://aclanthology.org/D19-1499/
%U https://doi.org/10.18653/v1/D19-1499
%P 4937-4946
Markdown (Informal)
[Semi-supervised Text Style Transfer: Cross Projection in Latent Space](https://aclanthology.org/D19-1499/) (Shang et al., EMNLP-IJCNLP 2019)
ACL
- Mingyue Shang, Piji Li, Zhenxin Fu, Lidong Bing, Dongyan Zhao, Shuming Shi, and Rui Yan. 2019. Semi-supervised Text Style Transfer: Cross Projection in Latent Space. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 4937–4946, Hong Kong, China. Association for Computational Linguistics.