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Abstract
Recent work has shown that current sentiment
classification models are fragile and sensitive
to simple perturbations. In this work, we
propose a novel adversarial training approach,
LexicalAT, to improve the robustness of cur-
rent sentiment classification models. The pro-
posed approach consists of a generator and a
classifier. The generator learns to generate ex-
amples to attack the classifier while the clas-
sifier learns to defend these attacks. Con-
sidering the diversity of attacks, the genera-
tor uses a large-scale lexical knowledge base,
WordNet, to generate attacking examples by
replacing some words in training examples
with their synonyms (e.g., sad and unhappy),
neighbor words (e.g., fox and wolf), or super-
superior words (e.g., chair and armchair). Due
to the discrete generation step in the generator,
we use policy gradient, a reinforcement learn-
ing approach, to train the two modules. Ex-
periments show LexicalAT outperforms strong
baselines and reduces test errors on various
neural networks, including CNN, RNN, and
BERT.1

1 Introduction

Sentiment classification is a fundamental research
area in natural language processing (Pang et al.,
2002; Glorot et al., 2011; Lai et al., 2015; Kir-
itchenko and Mohammad, 2018; Liu et al., 2018;
Chen et al., 2018). With the development of deep
learning, neural networks have obtained state-of-
the-art results on many sentiment classification
datasets (Kim, 2014; Dong et al., 2014; Tang et al.,
2015). However, despite the promising results,
recent work has shown that these models easily
fail in adversarial examples2 with little perturba-

∗Equal Contribution.
1The code will be released at https://github.com/

lancopku/LexicalAT
2Adversarial examples are intentionally designed by at-

tackers to cause the model to make a mistake.
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Figure 1: An attacking example for sentiment classi-
fication generated by the proposed approach. A pre-
trained classifier correctly predicts the label of the orig-
inal text but fails on the generated text.

tions on real examples. This phenomenon shows
that current sentiment classification models have
poorly learned the true underlying patterns that de-
termine the correct label. The over-fitting problem
still needs to be further explored.

Several approaches have been proposed in re-
cent years for the attack problem. These stud-
ies can be roughly classified into two categories,
data augmentation based approaches and adversar-
ial training based approaches. The key idea of the
former approaches is to assist the training of the
classifier by augmenting the training data with pre-
designed examples (Wang and Yang, 2015; Jia and
Liang, 2017; Iyyer et al., 2018). Adversarial train-
ing based approaches (Miyato et al., 2017) aim to
improve the generalization ability by adding ran-
dom noises to word embeddings. Although these
methods are good pioneering work, they either
heavily rely on human knowledge or suffer from
low diversity of attacks, which limits the robust-
ness to diverse words and expressions.

In this work, we propose a lexical-based adver-
sarial reinforcement training framework, Lexica-
lAT, for robust sentiment classification. Compar-

https://github.com/lancopku/LexicalAT
https://github.com/lancopku/LexicalAT
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ing to previous studies, our approach can gener-
ate diversely attacking examples with self-learned
policies. Our framework contains a generator and
a classifier. The generator provides examples to at-
tack the classifier while the classifier learns to de-
fend these attacks. To generate diverse examples,
we propose to use a large lexical knowledge base,
WordNet, to add perturbations on training exam-
ples by replacing some words with their synonyms
(e.g., sad and unhappy), neighbor words (e.g., fox
and wolf), or super-superior words (e.g., chair and
armchair)3, as shown in Figure 1. Specifically, the
output of the generator is a sequence of actions de-
ciding which words should be replaced and their
replacements. By involving the attacking exam-
ples into the training, the classifier will be more
robust and powerful.

Since the generator has discrete generation
steps, the gradient-based approach cannot be di-
rectly used to back-propagate the errors. We con-
sider policy gradient, a reinforcement learning ap-
proach, to train the generator. With the feedback
from the classifier as the reward, the generator is
encouraged to generate tougher examples for the
classifier. In return, with the increasing number of
hard examples for training, the classifier becomes
more robust and powerful. We evaluate the pro-
posed approach on four popular sentiment classi-
fication datasets. Experiments show that Lexica-
lAT outperforms strong baselines on various mod-
els and various datasets.

• We propose a lexical-based adversarial rein-
forcement training approach, LexicalAT, to
improve the robustness of sentiment classifi-
cation models.

• To the best of our knowledge, it is the first
work of combining a knowledge base and ad-
versarial learning. The knowledge base con-
tributes to diverse example generation and
the adversarial learning develops the attack-
ing policy.

• Experiments show that LexicalAT outper-
forms strong baselines and improves results
on various models, including CNN, RNN,
and BERT.

3These relations are optional. If a relation has a high risk
of changing labels in specific datasets, it is feasible to drop it.

2 Related Work

In this work, we focus on single-label sentiment
classification where the input is a word sequence
and the output is a single label. In many senti-
ment classification datasets, neural networks have
achieved promising results, even comparable or
super to humans. However, several studies have
noted that these models are vulnerable and the
performance is very sensitive to simple perturba-
tions (Szegedy et al., 2014; Huang et al., 2017;
Yuan et al., 2017).

Based on these findings, some studies have
been proposed to improve the robustness of neu-
ral networks. These studies can be roughly classi-
fied into two categories, data augmentation based
approaches and adversarial training based ap-
proaches. The main idea of the data augmen-
tation based approaches is to augment the train-
ing data with pre-designed adversarial examples.
Iyyer et al. (2018) propose a paraphrase method
to generate syntactically adversarial examples for
machine translation tasks. To explore semanti-
cally adversarial examples, Kobayashi (2018) re-
places input words in real examples with the word
predicted by a label-conditional language model.
In these approaches, the attacking policy is task-
specific and elaborately designed by humans. Un-
like these approaches, Miyato et al. (2017) pro-
pose to use an adversarial training framework to
attack the classifier by adding perturbations to the
word embedding layer. However, the unchanged
input text makes it hard to improve the robustness
to diverse words and expressions.

In this work, we propose a new adversarial rein-
forcement training framework that aims to gener-
ate diverse attacks with self-learned policies. We
build a generator that acts as a policy learner to au-
tomatically learn to attack the classifier. To gen-
erate diverse examples, we include WordNet, a
large-scale lexical knowledge base, into the gen-
erator for word replacement.

3 Approach

3.1 Overview

Figure 2 shows the overall structure of LexicalAT.
Given a sentence, the generator first generates a
sequence of actions to replace some words with
substitutes in WordNet and build a new example.
Then, the new example is sent to the classifier to
get the action reward. If the generated example
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Figure 2: An illustration about the LexicalAT framework. The generator (G) generates an action sequence to
replace some words in a training example with new words in WordNet. The classifier (C) calculates the reward
of the generated example and returns it to the generator. G maximizes the expectation of the reward of generated
examples by policy gradient and C minimizes the cross entropy loss between real and generated examples.

successfully confuses the classifier and decreases
the probability of the original label, we regard it
as a good example and give it a high reward. In
this way, the generator is encouraged to generate
tough examples for the classifier and the challeng-
ing generated examples are used in the training
process of the classifier. By alternatively train-
ing the generator and the classifier, the classifier
is trained to be more robust and powerful.

3.2 Generator
The generator generates attacking examples by
adding noises on real examples with WordNet.
WordNet is a large English lexical database.
Nouns, verbs, adjectives and adverbs are grouped
into cognitive synonyms sets (synsets). Each
synset represents a distinct concept. As shown in
Table 1, WordNet has two basic relations:

• Synonymy. It is the most basic relation,
because WordNet uses sets of synonyms
(synsets) to represent word senses.

• Hyponymy and hypernymy (super-
subordinate). They are transitive relations
between synsets. Because there is usually
only one hypernym, the semantic relation
hierarchically organizes the meanings of
nouns.

The generation process is defined as a sequence
labeling task for simplification. It takes a text se-
quence as input and an action sequence as out-
put. Specifically, we define five actions repre-
senting the replacement decision, whether a word

Relation Syntactic Category Examples
Synonymy

N, V, Aj, Av
(pipe, tube)

(similar) (rise, ascend)
(sad, unhappy)

Hyponymy and
N

(sugar maple, maple)
Hypernymy (maple, tree)

(super-subordinate) (tree, plant)
Note: N = Nouns, Aj = Adjectives, V = Verbs, Av = Adverbs

Table 1: Basic relations in WordNet.

Action Description Example
0 No replacement N/A
1 Replacing with a

super word
hamburger vs. sandwich

2 Replacing with a
subordinate word

fish vs. salmon

3 Replacing with a
synonymy

disappointed vs. frustrated

4 Replacing with a
neighbor word

elephant vs.donkey

Table 2: Actions defined in this work. The neighbor
word is the word that shares the same super word with
the word to be replaced.

should be replaced or its replacement type, as
shown in Table 2. For example, if a word is la-
beled with action “2”, we choose a word from its
subordinate words with the highest frequency as
the replacement. Formally, assume that the in-
put is a sequence of words x = {x1, x2, · · · , xn}
where n is the length of input text. This mod-
ule generates a sequence of replacement actions
a = {a1, a2, · · · , an}. Then, by querying Word-
Net based on x and a, we can get a new sentence.
Since the proposed framework is independent of
the structure of the generator, for simplification
we use a traditional sequence labeling model, Bi-
Directional Long-Short Term Memory Network
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(Bi-LSTM) (Hochreiter and Schmidhuber, 1997),
as implementation.

3.3 Classifier
In this work, we focus on single-label sentiment
classification. The input is a sequence of words
and the output is a label from a pre-defined set
Y = {y1, y2, · · · , yk}, where k is the num-
ber of labels. To evaluate the effectiveness of
the proposed approach on various settings, we
implement two widely-used sentiment classifica-
tion networks, Recurrent Neural Network (RNN)
and Convolutional Neural Network (CNN) (Kim,
2014), and one state-of-the-art pre-trained model,
BERT (Devlin et al., 2018).

In the RNN-based classifier, the input word em-
beddings are fed into a single Long-Short Term
Memory Network (LSTM). Then, a feed-forward
layer transfers the last hidden vector of LSTM into
the probability distribution of labels.

In the CNN-based classifier, we first feed the
word embeddings into a convolutional layer with
four convolutional filters. Then, the concatenated
filter output applies a max-pooling and is fed into
a two-layer feed-forward network with ReLU, fol-
lowed by the softmax function.

In the BERT-based classifier, we use a model
pre-trained on a large-scale language modeling
dataset for initialization. Following the work (De-
vlin et al., 2018), we take the final hidden state for
the first token in the input as sentence representa-
tion for classification. We use the released model
and code, BERT-large, as implementation, which
is based on 24 transformer layers.4

3.4 Adversarial Reinforcement Training
Due to the discrete choice in generation steps, we
use policy gradient, a reinforcement learning ap-
proach, to adversarially train the two modules.
The generator can be viewed as the agent which
interacts with the classifier that acts as environ-
ment. The generator improves itself by maximiz-
ing the reward returned from the environment.

Given a real example (x, y), the generator first
samples an action sequence â based on the follow-
ing probability distribution:

â ∼ pG(a|x,θ), (1)

where θ represents the parameter of the generator.
4The pre-trained model is provided by goo.gl/

language/bert

Algorithm 1 Adversarial reinforcement training.
Require: Generator G; classifier C; training corpus D
1: Initialize G and C with random weights
2: Pre-train C using Eq. (6) on D
3: repeat
4: for warm-steps do
5: Sample an action sequence â using Eq. (1)
6: Build a new example (x′, y) using â
7: Compute reward r(â) by Eq. (3)
8: Update parameters of G by Eq. (4)
9: end for

10: for rl-steps do
11: Sample an action sequence â using Eq. (1)
12: Build a new example (x′, y) using â
13: Compute reward r(â) by Eq. (3)
14: Update parameters of G by Eq. (4)
15: Update parameters of C by Eq. (5)
16: Update parameters of C by Eq. (6)
17: end for
18: until convergence

Based on the sampled action sequence â, we get a
new example (x′, y) after word replacement.

Then, we feed the real example (x, y) and the
generated example (x′, y) into the classifier to get
the replacement reward r(â). Specifically, we de-
fine the reward as the absolute difference of the
probability of y between the real example and the
generated example:

r(â) = log pC(y|x;φ)− log pC(y|x̂;φ), (2)

where φ is the parameter of the classifier. If the
generated example successfully confuses the clas-
sifier and decreases the probability of y, we regard
it as a good example and give it a high reward. In
practice, we use the following equation to get a
new reward to train the generator steadily:

r′(â) = r(â)− EPG(a|x,θ)(r(a)), (3)

where EPG(a|x,θ)(r(a)) is the expectation of r(a).
Then, the reward is fed back to the generator.

Formally, the expected gradient of the parameter
θ can be approximated as:

∇θL ≈− r′(â)∇θlogpG(â|x;θ)
− EpG(â|x;θ)r

′(â),
(4)

where â is the generated action sequence. The sec-
ond term EpG(â|x;θ)r

′(â) means we approximate
the expectation with sampling in practice.

The generated example (x′, y) is then used to
train the classifier by minimizing the following
cross-entropy loss:

L = − log pC(y|x′,φ). (5)

goo.gl/language/bert
goo.gl/language/bert
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Furthermore, to prevent the classifier from for-
getting the knowledge of training data, we also use
teacher forcing (Goyal et al., 2016) to train the
classifier. After each reinforcement training step,
we run a teacher forcing step by directly using the
real example (x, y) to train the classifier:

L = − log pC(y|x,φ). (6)

Considering that reinforcement learning pro-
cess requires the two modules with the initial
learning ability, we pre-train the generator and the
classifier before the reinforcement learning stage.
The classifier is directly pre-trained on real train-
ing data until convergence. Due to the lack of
supervisory signals, we build a warm-up stage to
pre-train the generator. In the warm-up stage, the
feedback of the pre-trained classifier is used to
train the generator.

4 Experiments

We evaluate LexicalAT on four sentiment classifi-
cation datasets. We first introduce datasets, imple-
mentation details, and baselines. Then, we show
experiment results and provide detailed analysis.

4.1 Datasets

SST-2 & SST-5. The Stanford sentiment tree-
bank (Socher et al., 2013) is a single-sentence
classification dataset built on movie reviews.
Based on the difference of sentiment granularity,
the human annotators design two label sets. Fol-
lowing existing work (Kobayashi, 2018), we run
experiments on both label sets. For clarify, we call
them SST-2 and SST-5.

RT. The rating inference dataset (Pang and Lee,
2005) is another sentiment classification dataset.
The data is from internet movie reviews and has
two types of labels.

Yelp. The dataset is built upon reviews from
website Yelp.5 Each review has a rating label vary-
ing from 1 to 5. We randomly select 100K for
training, 10K for validation, and 10K for testing.
It is used to verify whether the proposed approach
is applied to tasks with large-scale data.

The dataset statistics are shown in Table 3. For
SST-2 and SST-5, we use the standard split in their
work. For RT, due to the lack of the standard split,
we randomly divide all examples into 90% for the

5https://www.yelp.com/dataset/challenge

Dataset #Class Avg. #w Train Dev Test

SST2 2 19 6,920 872 1,821
SST5 5 18 8,544 1,101 2,210
RT 2 21 8,608 964 1,089
Yelp 5 89 100,000 10,000 10,000

Table 3: Dataset statistics. “Class” is the number of
pre-defined labels. “Avg. #w” is the average word
number in the input text. “Train”, “Dev”, and “Test”
represent the sizes of the training set, the development
set, and the test set.

training set and 10% for the test set. To build the
development set, we randomly take out 10% from
the training set.

4.2 Baselines

We compare our proposed approach with the fol-
lowing robustness-driven approaches.

SynDA. It is a synonymy based data augmenta-
tion approach (Zhang et al., 2015). It uses an En-
glish thesaurus, obtained from WordNet, to ran-
domly replace some words in real examples with
their synonymys to build new examples.

ConDA. It is a contextual data augmentation ap-
proach (Kobayashi, 2018). They build adversarial
examples by randomly replacing words in real ex-
amples with the words that are predicted by a bi-
directional language model at the word positions.

VAT. It is an adversarial training based ap-
proach (Miyato et al., 2017) for robust text clas-
sification. It adds perturbations to recurrent neural
networks to improve the robustness. We use the
released code for implementation.

4.3 Experiment settings

Based on the performance on the development
sets, we set batch size to 64 except yelp whose
batch size is 256. We use the Adam optimizer to
train the modules. The details of model-specific
hyper-parameter settings are shown in Table 4. In
the pre-training stage, we train the classifier until
convergence. In the warm-up stage, we train the
generator by 3 epoch. In the reinforcement train-
ing stage, we set the maximum epcoh to 100 and
adopt the early stopping mechanism.

4.4 Results and Discussion

The results of the proposed approach and baselines
are shown in Table 5.
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Hyper-Parameter Setting

Generator

Embedding size 300
Embedding dropout 0.4
Hidden size 300
BiLSTM layer 1
Learning rate 1e-3

CNN Classifier

Embedding size 300
CNN layer 1
CNN output dropout 0.1
CNN dense layer dropout 0.4
Filter kernel size [2,3,4,5]
Filter kernel dimension 300
Learning rate 1e-4

RNN Classifier

Embedding size 300
Embedding dropout 0.4
Hidden size 300
LSTM layer 1
LSTM output dropout 0.1
Learning rate 1e-4

BERT Classifier

Transformer layer 24
Embedding size 1,024
Hidden size 1,024
Head 16
Learning rate 2e-5
Fine-turning epoch 3

Table 4: Settings of model-specific hyper-parameters.

As expected, LexicalAT, the proposed ap-
proach, substantially outperforms the naive base-
lines (RNN, CNN and BERT). Since RNN and
CNN are directly trained on training sets, they tend
to suffer from over-fitting. Therefore, it is reason-
able that LexicalAT brings improvements to RNN
and CNN models. BERT has better generalization
ability because it has been pre-trained on a large
scale corpus. Even so, LexicalAT still gains accu-
racy improvements over BERT by 0.43 on SST-2,
0.31 on SST-5, 0.11 on RT, and 0.74 on Yelp, re-
spectively. These results show that the proposed
approach is universal and well applied to various
models, even the state-of-the-art pre-trained model
BERT.

By contrast, SynDA, the synonymy based data
augmentation approach, does not bring significant
performance improvements over the naive base-
lines. The main difference between LexicalAT
and SynDA is that SynDA uses the random re-
placement policy to generate new examples, while
LexicalAT uses the dynamic replacement policy
learned by the proposed adversarial reinforcement
training framework. The performance gap be-
tween LexicalAT and SynDA shows that the pro-
posed adversarial reinforcement training frame-
work is effective for learning the attacking policy
toward the weaknesses of the classifier. Further-

Approach SST-2 SST-5 RT Yelp

RNN(our implemented) 80.61 40.54 75.85 60.94
RNN (Kobayashi, 2018) 80.30 40.20 * *
+SynDA (Zhang et al., 2015) 80.20 40.50 * *
+ConDA (Kobayashi, 2018) 80.10 41.10 * *
+VAT (Miyato et al., 2017) 81.16 37.38 75.94 59.69
+LexicalAT (proposed) 81.60 41.99 76.12 61.18

Approach SST-2 SST-5 RT Yelp

CNN(our implemented) 80.62 40.81 75.85 60.77
CNN (Kobayashi, 2018) 79.50 41.30 * *
+SynDA (Zhang et al., 2015) 80.00 40.70 * *
+ConDA (Kobayashi, 2018) 80.80 42.10 * *
+VAT (Miyato et al., 2017) * * * *
+LexicalAT (Proposed) 81.58 41.67 76.22 61.86

Approach SST-2 SST-5 RT Yelp

BERT(our implemented) 92.60 55.07 88.57 66.76
+SynDA (Zhang et al., 2015) * * * *
+ConDA (Kobayashi, 2018) * * * *
+VAT (Miyato et al., 2017) * * * *
+LexicalAT (proposed) 93.03 55.38 88.68 67.50

Table 5: Comparisons between LexicalAT and base-
lines on four datasets.6 LexicalAT outperforms strong
baselines on all datasets, including three small datasets
and a large dataset, Yelp.

more, the proposed approach beats VAT under var-
ious datasets. Since VAT only adds random noises
on word embeddings without changing the input
text, it does not augment the training data with
new words and expressions, and thus limits the ro-
bustness improvement. In summary, with adver-
sarial reinforcement training, lexicalAT is capable
of learning the attacking policy toward the weak-
nesses of the classifier. With WordNet, lexicalAT
can generate examples with diverse expressions,
which improves the classifier robustness. These
advantages make the proposed approach perform
well and achieve the best performance on various
datasets.

To illustrate the training process, we plot the
performance on the SST-5 development set in Fig-
ure 3. LexicalAT converges to a higher accuracy
than the naive baseline RNN. It shows that the ad-
versarial reinforcement training mechanism is ro-
bust and can converge to good results.

Furthermore, we compare the performance of
lexicalAT and naive baselines on defending at-
tacks, taking RNN and CNN on SST-2, SST-5,
and RT as examples. The results are shown in Ta-
ble 6. “RNN-Attacking Set” and “CNN-Attacking
Set” are two sets generated by two different gen-

6The results of SynDA and ConDA are from the work
of Kobayashi (2018).
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SST-2 Classifier (RNN) Classifier (CNN) LexicalAT (RNN) LexicalAT (CNN)

Test Set 80.61 80.62 81.60 81.58
RNN-Attacking Set 69.91 65.62 76.44 73.70
CNN-Attacking Set 68.81 68.04 74.62 76.28

SST-5 Classifier (RNN) Classifier (CNN) LexicalAT (RNN) LexicalAT (CNN)

Test Set 40.54 40.81 41.99 41.67
RNN-Attacking Set 35.16 35.43 38.73 38.91
CNN-Attacking Set 34.98 36.60 37.65 38.96

RT Classifier (RNN) Classifier (CNN) LexicalAT (RNN) LexicalAT (CNN)

Test Set 75.85 75.85 76.12 76.22
RNN-Attacking Set 69.05 68.78 71.44 70.61
CNN-Attacking Set 62.90 61.89 69.88 71.17

Table 6: Comparisons of different classifiers on defending attacks. The classifiers trained in lexicalAT, lexicalAT
(RNN) and lexicalAT (CNN), have better defending ability. “Classifier (RNN)” and “Classifier (CNN)” are two dif-
ferent naive baselines trained on real examples. “Lexical (RNN)” and “Lexical (CNN)” are two classifiers trained
in the framework of lexicalAT. “Test Set” is the standard test set. “RNN-Attacking Set” and “CNN-Attacking Set”
are two attacking sets generated by two generators in the framework of lexicalAT based on real test examples. The
two generators are trained based on the interaction with RNN-based and CNN-based classifiers, respectively.
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Figure 3: Learning curves of RNN and LexicalAT on
the development set of SST-5.

erators in lexicalAT based on real test examples.
The two generators are trained based on the in-
teraction with RNN-based and CNN-based classi-
fiers, respectively. The naive baselines, RNN and
CNN, have weak robustness performances and the
results drop largely on attacking examples, even
a 15% accuracy decrease for “Classifier (CNN)”
on SST-2. In comparison, the classifiers trained in
lexicalAT, lexicalAT (RNN) and lexicalAT (CNN),
have better defending ability.

4.5 Analysis

What is the effect of each action? To show the
effect of different actions, we take RNN and CNN
on SST-2, SST-5, and RT as examples and conduct
experiments by dropping one action at a time. As
Table 7 shows, only some actions are useful for
the robustness improvement. The average perfor-
mance becomes better after dropping subordinate

Setting SST-2 SST-5 RT Average

all words (RNN) 81.60 41.14 75.76 66.17
-super words 80.72 41.17 75.02 65.64
-subordinate words 80.56 41.67 75.48 65.90
-synonymy words 80.45 41.99 76.12 66.19
-neighbor words 80.56 40.91 74.66 65.38

Setting SST-2 SST-5 RT Average

all words (CNN) 80.18 41.86 74.84 65.63
-super words 79.96 41.67 76.22 65.95
-subordinate words 81.58 41.49 75.39 66.15
-synonymy words 79.24 41.67 74.74 65.22
-neighbor words 81.33 40.68 74.47 65.49

Table 7: Effects of different replacement actions. As
we can see, neighbor and synonymy words contribute
most to the performance.

words under two different settings. Surprisingly,
the neighbor words largely contribute to the per-
formance. Without neighbor words, the average
accuracies are dropped from 66.17 to 65.38 for
RNN, and from 65.63 to 65.22 for CNN. Neigh-
bor words share the same super word, like “fox”
and “wolf”. In WordNet, neighbor words usually
have similar semantic meanings. By replacing a
word with its similar word, the semantic diversity
can be largely enhanced. Furthermore, the seman-
tic similarity can reduce the risk of changing the
label when modifying the input text. Therefore, it
is a good choice to include this relation in models
unless the replacement exactly impacts the origi-
nal label in specific tasks.

Is the learned attacking policy universal or
model-specific? To explore this question, we
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Classifier (RNN) Classifier (CNN)

None 80.81 80.62
Policy-RNN 81.44 80.89
Policy-CNN 81.22 81.27

Table 8: Results of different classifiers trained with
the examples generated by different attacking poli-
cies on SST-2 dataset. “Policy-RNN” and “Policy-
CNN” are the learned policies from the interaction with
RNN-based and CNN-based classifiers in the proposed
framework.

conduct the following experiments.
We train two generators based on the feedback

of the classifiers with different structures (e.g.,
RNN and CNN) on SST-2. For clarify, we call
the learned attacking policies in the two genera-
tors as policy-RNN and policy-CNN, as shown in
Table 8. Then, we put the examples generated by
policy-RNN and policy-CNN into the training data
to train the classifiers with different structures.

For the RNN-based classifier, two attacking
policies both outperform the naive RNN baseline,
which shows the universality of the learned attack-
ing policy. Furthermore, policy-RNN brings more
improvements than policy-CNN does on the RNN-
based classifier. It demonstrates that the learned
attacking policy has model-specific features. Sim-
ilar result happens to the CNN-based classifier.

In summary, different classification models
share some weaknesses and have their own unique
vulnerability. Considering unique weaknesses are
difficult to be summarized by human knowledge,
our approach is an effective way to automatically
learn the attacking policy toward the classifier
weaknesses.

4.6 Case Study

Table 9 presents the adversarial examples gener-
ated by the generator on SST-5. Even the sim-
ple perturbations can confuse the classifier, which
shows the weak robustness of the classifier.

4.7 Error Analysis

Although the proposed approach improves the ro-
bustness of current classifiers, it is important to
note that there still have several problems to be
further explored.

First, some generated examples contain low-
quality phrases, such as the bottom one in Ta-
ble 9. This problem is due to the inappropriate
word replacement. In the future work, we would

Original Text The movie is without intent.
Generated Text The film is without spirit.

Original Text The script is smart not cloying.
Generated Text The dialogue is smart not saccha-

rine.

Original Text This is a gorgeous film vivid with
color music and life.

Generated Text This is a gorgeous movie vivid with
gloss sound and spirit.

Original Text Hollywood ending is the most
disappointing woody allen movie
ever.

Generated Text Hollywood ending is the most fail
woody allen film ever.

Table 9: Adversarial examples generated by our ap-
proach.

like to explore how to generate diverse and high-
quality examples by taking sentence context, re-
placed word features, and replacing word features
into consideration.

Second, we regard the examples that confuse
the classifier as good attacking examples and give
them high reward to train the generator. However,
not all confusing examples are useful for robust-
ness improvements. To optimize the training time,
in the future we will explore an advanced Lexica-
lAT to automatically distinguish between “useful
examples” and “useless examples”.

5 Conclusion and Future Work

In this work, we propose a new adversarial train-
ing approach, LexicalAT, to improve the robust-
ness of current sentiment classification models.
The key idea is to use WordNet and adversarial
reinforcement training to automatically learn the
diversely attacking policy. We evaluate Lexica-
lAT on four representative sentiment classification
datasets. Experiments demonstrate that the pro-
posed approach has better generality and reduces
test errors on various neural networks, including
CNN, RNN, and BERT.

In the future work, we would like to build an
advanced version of LexicalAT from the follow-
ing perspectives. First, to address the problem of
low-quality phrases in generated text, we will ex-
plore how to keep the syntactic correctness of the
generated text. Second, we would like to figure
out the detailed effects of the generated examples
on the robustness of sentiment classification mod-
els. By removing useless examples, we can obtain
higher training speed.
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