
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing, pages 5658–5667,
Hong Kong, China, November 3–7, 2019. c©2019 Association for Computational Linguistics

5658

Sequential Learning of Convolutional Features
for Effective Text Classification

Avinash Madasu
Samsung R&D Institute, Bangalore
m.avinash@samsung.com

Vijjini Anvesh Rao
Samsung R&D Institute, Bangalore
a.vijjini@samsung.com

Abstract

Text classification has been one of the ma-
jor problems in natural language processing.
With the advent of deep learning, convolu-
tional neural network (CNN) has been a pop-
ular solution to this task. However, CNNs
which were first proposed for images, face
many crucial challenges in the context of
text processing, namely in their elementary
blocks: convolution filters and max pool-
ing. These challenges have largely been over-
looked by the most existing CNN models pro-
posed for text classification. In this paper, we
present an experimental study on the funda-
mental blocks of CNNs in text categorization.
Based on this critique, we propose Sequen-
tial Convolutional Attentive Recurrent Net-
work (SCARN). The proposed SCARN model
utilizes both the advantages of recurrent and
convolutional structures efficiently in compar-
ison to previously proposed recurrent convo-
lutional models. We test our model on differ-
ent text classification datasets across tasks like
sentiment analysis and question classification.
Extensive experiments establish that SCARN
outperforms other recurrent convolutional ar-
chitectures with significantly less parameters.
Furthermore, SCARN achieves better perfor-
mance compared to equally large various deep
CNN and LSTM architectures.

1 Introduction

Text classification is one of the major applications
of Natural Language Processing (NLP). Text clas-
sification involves classifying a text segment into
different predefined categories. Sentiment analy-
sis of product reviews, language detection, topic
classification of various news articles are some
of the problem statements of text classification.
Prior to the success of deep learning, text clas-
sification was dealt using lexicon based features.
These primarily involve parts-of-speech (POS)

tagging where verbs and adjectives are given more
importance compared to other POS. Frequency
based feature selection techniques like Bag-of-
Words (BoW), Term frequency-Inverse document
frequency (TF-IDF) have been used and the fea-
tures are trained using machine learning classi-
fiers like Logistic Regression (LR) or Naive Bayes
(NB). These approaches provided strong baselines
for text classification (Wang and Manning, 2012).
However, sequential patterns and semantic struc-
ture between words play a crucial role in decid-
ing the category of a text. Traditional lexicon ap-
proaches fail to capture such complexities. Since
the success of deep learning, neural network ar-
chitectures have outperformed traditional methods
like BoW and count based feature selection tech-
niques. Neural network architectures especially
Convolutional Neural Networks (CNN) and Long
Short Term Memory (Hochreiter and Schmidhu-
ber, 1997) (LSTM) have achieved state-of-the-art
results in text classification. Shallow CNN archi-
tectures (Kim, 2014; Madasu and Rao, 2019a,b)
achieved admirable results on text classification
as well. Very deep CNN architectures were pro-
posed based on character level features (Zhang
et al., 2015) and word level features (Conneau
et al., 2016) which significantly improved the per-
formance in text classification. In image classifi-
cation and object detection, previously proposed
deep CNN architectures (Szegedy et al., 2016)
achieved state-of-the-art results. The effectiveness
of deep CNNs can be very well explained where
primary convolutional layers detect the edges of
an object. As we go deeper, more complex fea-
tures of an image are learnt. But in case of text,
there hasn’t been much understanding behind their
success. Popular CNN architectures use convolu-
tion with a fixed window size over the words in a
sentence. However, a question arises whether se-
quential information is preserved using convolu-

5659

tion across words. What will be the effect if word
sequences are randomly shuffled and convolution
is applied on them? In case of LSTM, random
shuffling results in least performance as LSTMs
rely on sequential learning and random ordering
harms any such learning. Whereas, in case of a
fixed window convolution applied across words,
there is no strong evidence that it preserves se-
quential information. Previously proposed CNN
architectures use max pooling operation across
convolution outputs to capture most important fea-
tures (Kim, 2014). This leads to another question,
if the feature selected by max pooling will always
be the most important feature of the input or oth-
erwise.

To answer the above questions, we conduct a
study of experiments about the effects of using
fixed window convolution across words as dis-
cussed in Section 3.1. And the effects of using
max pooling operation on convolution outputs are
discussed in Section 3.2. Based on their critique,
we propose a Sequential Convolutional Attentive
Recurrent Network (SCARN) model for effective
text classification. The proposed model relies on
recurrent structures for preserving sequential in-
formation and convolution layers to learn task spe-
cific representations. In summary, the contribu-
tions of the paper are:

• We propose a new recurrent convolutional
model for text classification by discussing the
shortcomings of max pooling operation and
also the strength and weakness of convolu-
tion operation.

• We evaluate the proposed model’s perfor-
mance on seven benchmark text classifica-
tion datasets. The results show that the
proposed model achieves better results with
lesser number of parameters than other recur-
rent convolutional architectures.

2 Related Work

2.1 Recurrent Convolutional Networks
Previous architectures proposed for text classifica-
tion were entirely convolution or recurrent based.
There have been limited but popular works on
combining recurrent structures with convolutional
structures. (Lai et al., 2015) proposed a neu-
ral network (RCNN) model which combined re-
current and convolutional architectures. In their
model each word is represented by a triplet of the

word itself, its left and right context words, which
are then trained sequentially using LSTM. Max
pooling is then applied to capture the most im-
portant features of a sentence. Another attempt
to combine recurrent and convolutional structures
was made by Lee and Dernoncourt (2016) for se-
quential short-text classification. Their model uses
LSTM to train short-texts and max pooling is ap-
plied on the outputs of all timesteps of LSTM to
create a vector representation for each short-text.
These architectures first use LSTM to train se-
quences and then max pooling operation is applied
on its output. Zhou et al. (2015) proposed a recur-
rent convolutional network (C-LSTM) where con-
volution is applied over windows of multiple pre-
trained word vectors (fixed window size) to obtain
higher level representations. These features serve
as input to an LSTM for learning sequential infor-
mation.

2.2 Attention Mechanism

Attention significantly improves the focusing on
most meaningful information in the sentence.
CNN and RNN architectures that were proposed
with attention mechanism achieved superior per-
formance to non-attention architectures. Attention
originally proposed for machine translation (Bah-
danau et al., 2014) was applied for document clas-
sification (Yang et al., 2016) as well. Several vari-
ants of attention mechanism have been proposed
like global and local attention (Luong et al., 2015)
and self attention (Lin et al., 2017). Attention
has been applied to CNN blocks like pooling lay-
ers (Santos et al., 2016) for discriminative model
training. Recently, attention based architectures
achieved state-of-art results in question answering
(Devlin et al., 2018).

3 Understanding Convolution and Max
pooling

In this section we explore the working of CNNs
in the context of natural language to better explain
the intuition behind proposing SCARN. The key
components of CNNs, namely convolution and
max pooling strengths and weaknesses are dis-
cussed in this section.

3.1 Convolution operation

The convolution operation in the context of its ap-
plication on word embeddings is discussed as fol-
lows.

5660

(a) Original Embeddings (b) Convolution Transformation

Figure 1: t-SNE projection of original embeddings and after convolution transformation

What it doesn’t learn
Convolution operation can be explained as a
weighted sum across timesteps. This may result
in loss of sequential information. To illustrate our
hypothesis, we conduct an experiment on the Rot-
ten Tomatoes dataset (Pang and Lee, 2005). In this
experiment we train a CNN with convolution be-
ing applied on words with the fixed window size
varying from one to maximum sentence length.
We repeat this experiment with randomly shuf-
fling all the words in an input sentence (Random
ordering), and with shuffling every two consecu-
tive words as shown in this example “read book
forget movie” to “book read movie forget” (Alter-
nate shuffle). The results of this experiment are
illustrated in Figure 21. Our observations in this
experiment are the following:

• CNNs fail to fully incorporate sequential in-
formation as performance on random order-
ing and correct ordering are marginally near
each other. As evident in the figure, the per-
formance with correct ordering on window
size 7 is comparable to performance with ran-
dom ordering on window size 1.

• As window size increases, the difference be-
tween correct and incorrect orderings dimin-
ishes and finally converges when window
size is complete sentence length. This indi-
cates that the ability to capture sequential in-
formation by CNNs, decline with increasing
window size.

Furthermore, we also note that while performance
on random ordering is marginally less than correct

1Experiment on more datasets could be found in the Ap-
pendix B

ordering, it is still higher than other context blind
algorithms like bag-of-words as shown in Table
1. This implies that while not fully exploiting se-
quential information, convolution filters still learn
something valuable which we explore in next sec-
tion.

What it learns
To understand what convolution filters do, we train
a CNN with single window size on the SST2
dataset (Socher et al., 2013) for sentiment classifi-
cation. As the convolution acts over a single word,
it has no ability to capture sequential information.
Hence, irrespective of input sentence word order,
words will always have same respective convo-
lution output. Essentially, convolution layer here
acts like an embedding transformation, where in-
put embedding space is transformed into another
space. To understand this new space we project
the respective embeddings using t-SNE (Maaten
and Hinton, 2008) and illustrate them in Figure
1. Here we make a distinction between the se-
mantic knowledge of a word and the task spe-
cific knowledge of a word. As this experiment
is done on dataset SST2, we refer to task specific
knowledge as the sentiment knowledge of a word.
Word embeddings2 are generally trained on huge
domain generic data because of which they cap-
ture the general semantic information of the word.
Figure 1a shows these word embeddings as they
are in the original space. As we can see, seman-
tically similar words cluster together. Figure 1b
shows words after their convolutional transforma-
tion. Blue coloured words represent words with
positive sentiment. Red with negative sentiment

2In this experiment GloVE word embeddings were used.

5661

Figure 2: Accuracy (y-axis) percentage on Rotten
Tomatoes dataset with varying window size.

and green words are those which are semantically
close to negative sentiment words. However, in the
context of movie reviews, their sentiment value is
close to positive sentiment words. From this ex-
periment we observe:

• The transformation of the green words be-
tween original and convoluted outputs, shows
that the convolution layer is able to tune their
input embeddings such that they are more
closer to the positive sentiment cluster than
to their original semantic cluster. For exam-
ple, a word like “killer” in the original em-
bedding space is very close to negative sen-
timent words like, “bad” and “awful”, espe-
cially if the word embeddings were produced
on huge fact based datasets like Wikipedia or
news datasets. However in the SST2 dataset,
“killer” is often used to describe a movie very
positively. Hence sequential learning on such
transformed embeddings will be more effec-
tive than the original semantic embeddings.

• Some words like “pretty” might be semanti-
cally closer to the positive sentiment words.
However in the dataset, we find common oc-
currences of phrases like “pretty good” or
“pretty bad”. The layer has hence trans-
formed its position nearly equidistant to both
the negative and positive clusters. In other
words, convolution layer is able to robustly
create a transformation which can handle any
task specific noise.

The above observations show the effectiveness
of the convolution operation. This is because a
single convolution filter output value captures a
weighted summation over all the features of the
original word embedding. This enables the net-
work to learn more task appropriate features as

Figure 3: Accuracy (y-axis) percentage on TREC and
SST2 datasets with varying n for the nth Max pooling.

many as the number of filters.

With the above points in mind, we observe that
convolution operation does not fully exploit se-
quential information, especially on larger window
sizes. However we do see their effectiveness in
conforming the input embeddings to a represen-
tation specifically meaningful to the task. Hence,
for sequential learning instead of relying on con-
volution, we use recurrent architectures in our pro-
posed SCARN model.

3.2 Max pooling operation: More doesn’t
mean better

Max pooling operation in images identify the
discriminative features from convolution outputs.
However this does not relate the same way of
selecting most relevant features from convoluted
features in texts. To illustrate this, we perform
an experiment using a CNN architecture based
on architecture by Kim (2014) popularly used in
text classification. We define nth Max pooling
as choosing nth highest value of all filters as op-
posed to first (n=1). By analyzing the performance
distinctions on varying values of n, we make an
attempt to assess whether maximum necessarily
means task meaningful. The results are illustrated
in Figure 33. The results show that when n is in-
creased the performance varies arbitrarily on all
datasets. This shows that there is no apparent co-
relation between magnitude of the values to im-
portance for the task. Hence, this relationship does
not stand strong for text based inputs.

3Experiment on more datasets could be found in the Ap-
pendix B

5662

4 Model

4.1 Overview
The proposed SCARN model architecture is
shown in the Figure 4. Let V be the vocabulary
size considered and X ∈ RV×d represent embed-
ding matrix where Xi is a d dimensional word vec-
tor. Vocabulary words contained in the pretrained
embeddings are initialized to their respective em-
bedding vectors and words that are not present are
assigned 0’s. For each input text, a maximum
length N is considered. Zero padding is applied if
the length of input text is less than N . Hence, each
sentence or paragraph is converted to I ∈ RN×d

dimensional vector which is the input to SCARN
model.

The model consists of two subnetworks: Con-
volution Recurrent subnetwork and Recurrent At-
tentive subnetwork. In the first subnetwork, con-
volution with single window size is applied on
the input I . Convolution filters learn the higher
level representations from the input text. The out-
put from convolution is trained sequentially us-
ing LSTM network. In the second subnetwork,
the input I is trained using LSTM. To better fo-
cus on most relevant words, attention mechanism
is applied to the outputs of LSTM from every time
step. Attention creates an alternate context vec-
tor for the input I by choosing the most suitable
words necessary for classification. The outputs
from the first subnetwork and second subnetwork
are concatenated and connected to the output layer
through a dense connection.

4.2 Convolution Recurrent subnetwork
Let I be represented as sequence of words I =
w1w2w3...wN where wi represent the ith word in
the input. A total of K convolution filters are ap-
plied on each word wi of input. Let L ∈ RK×d be
the weight matrices of all filters. For each filter l
∈ R1×d when applied on wi, outputs a new feature
Cil. Therefore, a new feature vector Ci is obtained
for each word wi after convolving with K filters.

Ci = Ci1Ci2Ci3......CiK (1)

Similarly, the above procedure is repeated for all
the words in the input to produce a feature vector
C ∈ RN×d×K .

C = f(I ~ L) (2)

where ~ represents convolution operation and f is
the non-linear activation (ReLU). Applying con-

Figure 4: SCARN Architecture

Figure 5: concat-SCARN architecture

volution to individual words preserve the sequen-
tial information. Convolution learns the higher
level representations for the input words. Each
word will be transformed to a new representation
pertinent to the task. The new feature representa-
tions are trained sequentially using LSTM.

4.3 Recurrent Attentive subnetwork
In this subnetwork, the input word embeddings
are trained using LSTM. All words in the input
sentence are not equally important in predicting
final output. Although, LSTM learns sequential
information, selecting significant information is a
key issue for text classification. For this purpose,
we employ an attention layer on the top of LSTM
outputs. Attention mechanism focuses on specific
significant words and tries to construct alternate
context vector by aggregating the word represen-
tations.

5 Experiments

5.1 Datasets
We tested our model on standard benchmark
datasets: Rotten-Tomatoes (RT) (Pang and Lee,
2005), Polarity V2.0 (Pol) (Pang and Lee, 2004),
SST-2 (Socher et al., 2013), Home and Kitchen
reviews (AR) (He and McAuley, 2016), TREC
(Li and Roth, 2002), IMDB (Maas et al., 2011)

5663

and Subjectivity Objectivity (SO) (Pang and Lee,
2004). The statistics for the datasets are shown in
Table 3

5.2 Baselines

We compared our model to various text classifica-
tion approaches4.

BoW and TF-IDF + LR
Bag-of-words(BoW) and TF-IDF are strong base-
lines for text classification. BoW and TF-IDF fea-
tures are extracted and softmax is applied on the
top for classification.

Average Word Vectors + MLP
This baseline uses the average of word embed-
dings as features for the input text which are then
trained using Multilayer perceptron (MLP).

Paragraph2Vec + MLP
Each input sentence is converted to a feature vec-
tor using Paragraph2vec(Le and Mikolov, 2014)
which are then trained using Multilayer perceptron
(MLP).

Deep CNN
This baseline is based on deep CNN architecture
(Conneau et al., 2016) with approximately match-
ing number of parameters as our model.

Char CNN
For our comparison, we employed the Char CNN
architecture (Zhou et al., 2015) with less parame-
ters compared to the original model, as the datasets
used by them were considerably huge than ours.

LSTM and Bi-LSTM
We also offer a comparison with LSTM and Bi-
LSTM architectures with a single hidden layer and
approximately matching number of parameters as
our model.

LSTM + Attention
In this baseline, attention mechanism is applied
on the top of LSTM outputs across different time
steps.

concat-SCARN
In this model, we concatenate the outputs from
convolution layer as in SCARN, with input word
embeddings at each time step. The concatenated

4For lack of code, results are from our implementations

outputs are trained using LSTM. Attention is ap-
plied on the top of this layer. Figure 5 shows the
architecture of concat-SCARN model.

RCNN
We compared our model to the RCNN model (Lai
et al., 2015) which uses max pooling for selecting
the most appropriate features of a sentence.

C-LSTM
We compared our model to C-LSTM model (Zhou
et al., 2015) which uses convolution over fixed
window of words to learn higher level represen-
tations.

5.3 Implementation

Input and Training Details
We used google pretrained word vectors for C-
LSTM5, as it was used in the original work. For all
the other experiments which require embeddings,
we use GloVe pretrained word vectors6. The size
of a word embedding in this model is 300. For
each dataset, a maximum sentence length is con-
sidered which is 30 for TREC, SO, RT, Pol, SST-2
datasets, 400 for IMDB and 100 for AR dataset.

We apply a dropout layer (Srivastava et al.,
2014) with a probability of 0.5 on the pretrained
embeddings. We also apply dropout with a prob-
ability 0.5 on the dense layer that connects to out-
put. We use Adam as the optimizer with a batch-
size of 16 for small SCARN model and 50 for
Large SCARN model. The initial learning rate is
set to 0.0003. Training is done for 30 epochs.

Architecture
We employ two different architectures of SCARN
model since the datasets vary in size. For datasets
TREC, SO, RT, Pol, SST-2 the number of convo-
lution filters are 50. Number of LSTM cells con-
sidered for these datasets are 32. We call this ar-
chitecture Small SCARN model. For datasets AR
and IMDB, number of convolution filters are 100
and number of LSTM cells are 64. We call this
architecture Large SCARN model. The compar-
ison of number of parameters for each model is
shown in Table 2. ReLU is used as the activation
function in convolution layers. In the output layer,
softmax is used for multi-class classification and
sigmoid for binary.

5https://code.google.com/archive/p/word2vec/
6https://nlp.stanford.edu/data/glove.840B.300d.zip

5664

Model IMDB TREC SO RT Pol AR SST-2

Linear
BoW + LR 86.452 73.600 82.800 64.320 76.500 47.000 80.500

TFIDF + LR 78.740 72.000 84.000 63.237 77.250 49.200 80.340

Word Vector
Avg Word Vectors + MLP 85.44 86.999 90 75.691 68.25 47.015 81.219

Paragraph2Vec + MLP 77.472 45 77.2 62.996 77.25 38.925 67.27

CNN
Deep CNN 78.44 28.999 85.799 75.4 69.999 40.333 64.305

Char CNN 70.484 74.199 59 50 50.249 34.37 60.516

RNN
LSTM 88.37 76.99 90.899 77.436 74.5 47.85 78.747

Bi-LSTM 88.69 75.8 91.399 76.594 77.499 51.569 79.242

Attention
LSTM+Attention 88.35 77 89.7 76.895 77.75 50.568 80.01

concat-SCARN 88.88 78.8 89.8 77.858 75.75 51.569 80.06

RNN-CNN
RCNN 86.607 79.6 91.1 78.098 78.25 48.026 80.395

C-LSTM 87.676 90.4 91.3 76.474 67 52.784 78.308

Our model SCARN 89.788 90.799 92.4 79.641 78.75 53.350 82.262

Table 1: Accuracy scores in percentage of all models on every dataset

Figure 6: Attention weights for some of the sentences from the SST2 dataset

Model No. of parameters
Small SCARN 68,425
Large SCARN 166,639

RCNN 180,601
C-LSTM 676,651

Table 2: Number of parameters for each model

6 Results and Discussion

Results of the experiments are tabulated in Table
1. We observe that, the proposed SCARN model
outperforms linear and word vector based models,
because of their inability to incorporate sequential
information. We also compare our model to recur-
rent models like LSTM, Bidirectional-LSTM and
find that SCARN outperforms them as these re-
current architectures even though learn sequential
information, lack SCARN’s learning of task spe-
cific representations through convolution. Mean-
while, SCARN outperforms deep CNN and char
CNN models, for their lack of learning sequen-

tial information the same way recurrent architec-
tures can. When SCARN is compared to other re-
current convolutional architectures RCNN and C-
LSTM, SCARN achieves significantly much bet-
ter performance with lesser parameters as shown
in Table 2. RCNN uses max pooling to capture the
most important feature. However our discussions
in Section 3.2 show max pooling’s choice of max-
imum may not necessitate importance. C-LSTM
used fixed window convolution across words. But
as seen in Section 3.1 fixed window convolution
do not capture sequential information adequately.
In SCARN model, we apply convolution across
single word to learn task specific information, on
which LSTM architecture is trained to capture
contextual information.

We observe that SCARN significantly outper-
forms concat-SCARN on all the datasets. We be-
lieve this is because in concat-SCARN, concate-
nation between input embeddings and convolution
activations is done. However they belong to a very
different distribution. In Figure 7, we show the

5665

Dataset Dataset size Train Dev Test Max Vocab size Classes
IMDB 50000 20000 5000 25000 30000 2
TREC 5952 4906 546 500 5000 6

SO 10000 8100 900 1000 30000 2
RT 10662 8100 900 1662 30000 2
Pol 2000 1280 320 400 30000 2
AR 121565 80000 20000 21565 30000 5

SST-2 9613 6920 872 1821 10000 2

Table 3: Summary Statistics of all datasets

(a) Mean

(b) Standard Deviation

Figure 7: Statistics of each feature in concatenation
layer outputs on the IMDB dataset’s training set.

average and standard deviation of outputs at the
concatenation layer of concat-SCARN on IMDB
dataset’s training set. As evident from the fig-
ure, we can make a stark distinction between the
two concatenated sections as shown in the archi-
tecture of concat-SCARN in Figure 5. Because
of the irregular distributions, the learning may be-
come biased towards one of the segments. Fur-
thermore, attempts to address this issue by using
batch normalization layers may not be a good idea,
as normalizing word embedding inputs may spoil
the semantic concepts underlying them. Hence, in
our SCARN model, subnetworks are trained dif-
ferently, and final activations are concatenated as
illustrated in SCARN’s architecture in Figure 4.
As long as both subnetworks’ outputs come from
similar activation function, they will have similar
distributions as well and hence they won’t suffer
from the same problem as concat-SCARN.

Effectiveness of attention has also been illus-
trated in Figure 6, where attention weights have
been shown in a heat map, with darker colors cor-

responding to a higher weightage. We observe
that SCARN is able to effectively utilize attention
weights to focus on most contributing input words.

7 Conclusion

In this paper we present a critical study and view-
point of CNNs, which even though are popularly
used in text classification, details of it are of-
ten overlooked. We find that convolutional fil-
ters learn particularly in the context of sequen-
tial information. But at the same time, they are
good at learning higher level task-relevant fea-
tures. On the other hand, we find max pooling
to be very arbitrary in selection of crucial fea-
tures and hence contributing minimal to the over-
all task. We also find that the problems with in-
put concatenation, as it imbalances the represen-
tations because of difference in nature of distribu-
tions. Based on our study we proposed SCARN,
for effectively utilizing convolution and recurrent
features for text classification. Our model beats
other popular ways of combining recurrent and
convolutional architectures with quite less number
of parameters on various benchmark datasets. Our
model also outperforms CNN and RNN architec-
tures with equally deep or same number of param-
eters.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Alexis Conneau, Holger Schwenk, Loı̈c Barrault,
and Yann Lecun. 2016. Very deep convolutional
networks for text classification. arXiv preprint
arXiv:1606.01781.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep

5666

bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Ruining He and Julian McAuley. 2016. Ups and
downs: Modeling the visual evolution of fashion
trends with one-class collaborative filtering. In
proceedings of the 25th international conference
on world wide web, pages 507–517. International
World Wide Web Conferences Steering Committee.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015.
Recurrent convolutional neural networks for text
classification. In Twenty-ninth AAAI conference on
artificial intelligence.

Quoc Le and Tomas Mikolov. 2014. Distributed repre-
sentations of sentences and documents. In Interna-
tional conference on machine learning, pages 1188–
1196.

Ji Young Lee and Franck Dernoncourt. 2016. Se-
quential short-text classification with recurrent and
convolutional neural networks. arXiv preprint
arXiv:1603.03827.

Xin Li and Dan Roth. 2002. Learning question classi-
fiers. In Proceedings of the 19th International Con-
ference on Computational Linguistics - Volume 1,
COLING ’02, pages 1–7, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos San-
tos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua
Bengio. 2017. A structured self-attentive sentence
embedding. arXiv preprint arXiv:1703.03130.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. arXiv preprint
arXiv:1508.04025.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analy-
sis. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 142–150, Port-
land, Oregon, USA. Association for Computational
Linguistics.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605.

Avinash Madasu and Vijjini Anvesh Rao. 2019a.
Effectiveness of self normalizing neural net-
works for text classification. arXiv preprint
arXiv:1905.01338.

Avinash Madasu and Vijjini Anvesh Rao. 2019b.
Gated convolutional neural networks for domain
adaptation. In International Conference on Applica-
tions of Natural Language to Information Systems,
pages 118–130. Springer.

Bo Pang and Lillian Lee. 2004. A sentimental educa-
tion: Sentiment analysis using subjectivity. In Pro-
ceedings of ACL, pages 271–278.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploit-
ing class relationships for sentiment categorization
with respect to rating scales. In Proceedings of ACL,
pages 115–124.

Cicero dos Santos, Ming Tan, Bing Xiang, and Bowen
Zhou. 2016. Attentive pooling networks. arXiv
preprint arXiv:1602.03609.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 conference on
empirical methods in natural language processing,
pages 1631–1642.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethink-
ing the inception architecture for computer vision.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2818–2826.

Sida Wang and Christopher D Manning. 2012. Base-
lines and bigrams: Simple, good sentiment and topic
classification. In Proceedings of the 50th Annual
Meeting of the Association for Computational Lin-
guistics: Short Papers-Volume 2, pages 90–94. As-
sociation for Computational Linguistics.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchi-
cal attention networks for document classification.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1480–1489.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in neural information pro-
cessing systems, pages 649–657.

Chunting Zhou, Chonglin Sun, Zhiyuan Liu, and Fran-
cis Lau. 2015. A c-lstm neural network for text clas-
sification. arXiv preprint arXiv:1511.08630.

https://doi.org/10.3115/1072228.1072378
https://doi.org/10.3115/1072228.1072378
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015

5667

(a) RT (b) IMDB (c) SO

Figure 8: nth Max pooling experiments on RT, IMDB and SO Datasets

Figure 9: Percentage distribution of max pooling out-
puts for misclassified samples from SST2 dataset

A Max Pooling: missclassified examples

For this experiment, after convolution over sin-
gle word, we perform max pooling across filter
outputs and attempt to discern the max pooling
outputs. We identify which input words’ convo-
lution outputs were chosen by the max pooling
operation. These distributions illustrated in Fig-
ure 9 are presented on some misclassified exam-
ples from the SST2 dataset. We see that often
words that should have been contributing most to
the overall sentiment value, have very less or min-
imal share. For example in the sentence, “it is also
stupider”, we see “is” having the near majority
share, even though it tells nothing about the sen-
timent of the sentence. At the same time in “rainy
days and movies about the disintegration of fami-
lies always get me down”, “disintegration” has al-
most no share despite being an important word for
evaluating sentiment.

B Experiments on more datasets

Figure 8 shows the nth Max pooling experiment
explained in Section 3.2 on other datasets, namely
RT, IMDB and SO. We still find that there is no

Figure 10: Accuracy (y-axis) percentage on SO dataset
with varying window size.

Figure 11: Accuracy (y-axis) percentage on SST2
dataset with varying window size.

co-relation between importance for task and mag-
nitude of the values. Figure 10 and Figure 11 show
the Ordering experiment from Section 3.1 on SO
and SST2 datasets respectively. As evident from
the figures, the proposed hypotheses stay sound on
other datasets as well.

