@inproceedings{pereg-etal-2019-absapp,
    title = "{ABSA}pp: A Portable Weakly-Supervised Aspect-Based Sentiment Extraction System",
    author = "Pereg, Oren  and
      Korat, Daniel  and
      Wasserblat, Moshe  and
      Mamou, Jonathan  and
      Dagan, Ido",
    editor = "Pad{\'o}, Sebastian  and
      Huang, Ruihong",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations",
    month = nov,
    year = "2019",
    address = "Hong Kong, China",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/D19-3001/",
    doi = "10.18653/v1/D19-3001",
    pages = "1--6",
    abstract = "We present ABSApp, a portable system for weakly-supervised aspect-based sentiment ex- traction. The system is interpretable and user friendly and does not require labeled training data, hence can be rapidly and cost-effectively used across different domains in applied setups. The system flow includes three stages: First, it generates domain-specific aspect and opinion lexicons based on an unlabeled dataset; second, it enables the user to view and edit those lexicons (weak supervision); and finally, it enables the user to select an unlabeled target dataset from the same domain, classify it, and generate an aspect-based sentiment report. ABSApp has been successfully used in a number of real-life use cases, among them movie review analysis and convention impact analysis."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pereg-etal-2019-absapp">
    <titleInfo>
        <title>ABSApp: A Portable Weakly-Supervised Aspect-Based Sentiment Extraction System</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Oren</namePart>
        <namePart type="family">Pereg</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Daniel</namePart>
        <namePart type="family">Korat</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Moshe</namePart>
        <namePart type="family">Wasserblat</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Jonathan</namePart>
        <namePart type="family">Mamou</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Ido</namePart>
        <namePart type="family">Dagan</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-11</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Sebastian</namePart>
            <namePart type="family">Padó</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Ruihong</namePart>
            <namePart type="family">Huang</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Hong Kong, China</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>We present ABSApp, a portable system for weakly-supervised aspect-based sentiment ex- traction. The system is interpretable and user friendly and does not require labeled training data, hence can be rapidly and cost-effectively used across different domains in applied setups. The system flow includes three stages: First, it generates domain-specific aspect and opinion lexicons based on an unlabeled dataset; second, it enables the user to view and edit those lexicons (weak supervision); and finally, it enables the user to select an unlabeled target dataset from the same domain, classify it, and generate an aspect-based sentiment report. ABSApp has been successfully used in a number of real-life use cases, among them movie review analysis and convention impact analysis.</abstract>
    <identifier type="citekey">pereg-etal-2019-absapp</identifier>
    <identifier type="doi">10.18653/v1/D19-3001</identifier>
    <location>
        <url>https://aclanthology.org/D19-3001/</url>
    </location>
    <part>
        <date>2019-11</date>
        <extent unit="page">
            <start>1</start>
            <end>6</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ABSApp: A Portable Weakly-Supervised Aspect-Based Sentiment Extraction System
%A Pereg, Oren
%A Korat, Daniel
%A Wasserblat, Moshe
%A Mamou, Jonathan
%A Dagan, Ido
%Y Padó, Sebastian
%Y Huang, Ruihong
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F pereg-etal-2019-absapp
%X We present ABSApp, a portable system for weakly-supervised aspect-based sentiment ex- traction. The system is interpretable and user friendly and does not require labeled training data, hence can be rapidly and cost-effectively used across different domains in applied setups. The system flow includes three stages: First, it generates domain-specific aspect and opinion lexicons based on an unlabeled dataset; second, it enables the user to view and edit those lexicons (weak supervision); and finally, it enables the user to select an unlabeled target dataset from the same domain, classify it, and generate an aspect-based sentiment report. ABSApp has been successfully used in a number of real-life use cases, among them movie review analysis and convention impact analysis.
%R 10.18653/v1/D19-3001
%U https://aclanthology.org/D19-3001/
%U https://doi.org/10.18653/v1/D19-3001
%P 1-6
Markdown (Informal)
[ABSApp: A Portable Weakly-Supervised Aspect-Based Sentiment Extraction System](https://aclanthology.org/D19-3001/) (Pereg et al., EMNLP-IJCNLP 2019)
ACL
- Oren Pereg, Daniel Korat, Moshe Wasserblat, Jonathan Mamou, and Ido Dagan. 2019. ABSApp: A Portable Weakly-Supervised Aspect-Based Sentiment Extraction System. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations, pages 1–6, Hong Kong, China. Association for Computational Linguistics.