@inproceedings{santy-etal-2019-inmt,
    title = "{INMT}: Interactive Neural Machine Translation Prediction",
    author = "Santy, Sebastin  and
      Dandapat, Sandipan  and
      Choudhury, Monojit  and
      Bali, Kalika",
    editor = "Pad{\'o}, Sebastian  and
      Huang, Ruihong",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations",
    month = nov,
    year = "2019",
    address = "Hong Kong, China",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/D19-3018/",
    doi = "10.18653/v1/D19-3018",
    pages = "103--108",
    abstract = "In this paper, we demonstrate an Interactive Machine Translation interface, that assists human translators with on-the-fly hints and suggestions. This makes the end-to-end translation process faster, more efficient and creates high-quality translations. We augment the OpenNMT backend with a mechanism to accept the user input and generate conditioned translations."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="santy-etal-2019-inmt">
    <titleInfo>
        <title>INMT: Interactive Neural Machine Translation Prediction</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Sebastin</namePart>
        <namePart type="family">Santy</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Sandipan</namePart>
        <namePart type="family">Dandapat</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Monojit</namePart>
        <namePart type="family">Choudhury</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Kalika</namePart>
        <namePart type="family">Bali</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-11</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Sebastian</namePart>
            <namePart type="family">Padó</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Ruihong</namePart>
            <namePart type="family">Huang</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Hong Kong, China</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>In this paper, we demonstrate an Interactive Machine Translation interface, that assists human translators with on-the-fly hints and suggestions. This makes the end-to-end translation process faster, more efficient and creates high-quality translations. We augment the OpenNMT backend with a mechanism to accept the user input and generate conditioned translations.</abstract>
    <identifier type="citekey">santy-etal-2019-inmt</identifier>
    <identifier type="doi">10.18653/v1/D19-3018</identifier>
    <location>
        <url>https://aclanthology.org/D19-3018/</url>
    </location>
    <part>
        <date>2019-11</date>
        <extent unit="page">
            <start>103</start>
            <end>108</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T INMT: Interactive Neural Machine Translation Prediction
%A Santy, Sebastin
%A Dandapat, Sandipan
%A Choudhury, Monojit
%A Bali, Kalika
%Y Padó, Sebastian
%Y Huang, Ruihong
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F santy-etal-2019-inmt
%X In this paper, we demonstrate an Interactive Machine Translation interface, that assists human translators with on-the-fly hints and suggestions. This makes the end-to-end translation process faster, more efficient and creates high-quality translations. We augment the OpenNMT backend with a mechanism to accept the user input and generate conditioned translations.
%R 10.18653/v1/D19-3018
%U https://aclanthology.org/D19-3018/
%U https://doi.org/10.18653/v1/D19-3018
%P 103-108
Markdown (Informal)
[INMT: Interactive Neural Machine Translation Prediction](https://aclanthology.org/D19-3018/) (Santy et al., EMNLP-IJCNLP 2019)
ACL
- Sebastin Santy, Sandipan Dandapat, Monojit Choudhury, and Kalika Bali. 2019. INMT: Interactive Neural Machine Translation Prediction. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations, pages 103–108, Hong Kong, China. Association for Computational Linguistics.