@inproceedings{santy-etal-2019-inmt,
title = "{INMT}: Interactive Neural Machine Translation Prediction",
author = "Santy, Sebastin and
Dandapat, Sandipan and
Choudhury, Monojit and
Bali, Kalika",
editor = "Pad{\'o}, Sebastian and
Huang, Ruihong",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-3018/",
doi = "10.18653/v1/D19-3018",
pages = "103--108",
abstract = "In this paper, we demonstrate an Interactive Machine Translation interface, that assists human translators with on-the-fly hints and suggestions. This makes the end-to-end translation process faster, more efficient and creates high-quality translations. We augment the OpenNMT backend with a mechanism to accept the user input and generate conditioned translations."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="santy-etal-2019-inmt">
<titleInfo>
<title>INMT: Interactive Neural Machine Translation Prediction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sebastin</namePart>
<namePart type="family">Santy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sandipan</namePart>
<namePart type="family">Dandapat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Monojit</namePart>
<namePart type="family">Choudhury</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Padó</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruihong</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we demonstrate an Interactive Machine Translation interface, that assists human translators with on-the-fly hints and suggestions. This makes the end-to-end translation process faster, more efficient and creates high-quality translations. We augment the OpenNMT backend with a mechanism to accept the user input and generate conditioned translations.</abstract>
<identifier type="citekey">santy-etal-2019-inmt</identifier>
<identifier type="doi">10.18653/v1/D19-3018</identifier>
<location>
<url>https://aclanthology.org/D19-3018/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>103</start>
<end>108</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T INMT: Interactive Neural Machine Translation Prediction
%A Santy, Sebastin
%A Dandapat, Sandipan
%A Choudhury, Monojit
%A Bali, Kalika
%Y Padó, Sebastian
%Y Huang, Ruihong
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F santy-etal-2019-inmt
%X In this paper, we demonstrate an Interactive Machine Translation interface, that assists human translators with on-the-fly hints and suggestions. This makes the end-to-end translation process faster, more efficient and creates high-quality translations. We augment the OpenNMT backend with a mechanism to accept the user input and generate conditioned translations.
%R 10.18653/v1/D19-3018
%U https://aclanthology.org/D19-3018/
%U https://doi.org/10.18653/v1/D19-3018
%P 103-108
Markdown (Informal)
[INMT: Interactive Neural Machine Translation Prediction](https://aclanthology.org/D19-3018/) (Santy et al., EMNLP-IJCNLP 2019)
ACL
- Sebastin Santy, Sandipan Dandapat, Monojit Choudhury, and Kalika Bali. 2019. INMT: Interactive Neural Machine Translation Prediction. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations, pages 103–108, Hong Kong, China. Association for Computational Linguistics.