@inproceedings{searle-etal-2019-medcattrainer,
title = "{M}ed{CATT}rainer: A Biomedical Free Text Annotation Interface with Active Learning and Research Use Case Specific Customisation",
author = "Searle, Thomas and
Kraljevic, Zeljko and
Bendayan, Rebecca and
Bean, Daniel and
Dobson, Richard",
editor = "Pad{\'o}, Sebastian and
Huang, Ruihong",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-3024/",
doi = "10.18653/v1/D19-3024",
pages = "139--144",
abstract = "An interface for building, improving and customising a given Named Entity Recognition and Linking (NER+L) model for biomedical domain text, and the efficient collation of accurate research use case specific training data and subsequent model training. Screencast demo available here: \url{https://www.youtube.com/watch?v=lM914DQjvSo}"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="searle-etal-2019-medcattrainer">
<titleInfo>
<title>MedCATTrainer: A Biomedical Free Text Annotation Interface with Active Learning and Research Use Case Specific Customisation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Thomas</namePart>
<namePart type="family">Searle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zeljko</namePart>
<namePart type="family">Kraljevic</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Bendayan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Bean</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Richard</namePart>
<namePart type="family">Dobson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Padó</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruihong</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>An interface for building, improving and customising a given Named Entity Recognition and Linking (NER+L) model for biomedical domain text, and the efficient collation of accurate research use case specific training data and subsequent model training. Screencast demo available here: https://www.youtube.com/watch?v=lM914DQjvSo</abstract>
<identifier type="citekey">searle-etal-2019-medcattrainer</identifier>
<identifier type="doi">10.18653/v1/D19-3024</identifier>
<location>
<url>https://aclanthology.org/D19-3024/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>139</start>
<end>144</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T MedCATTrainer: A Biomedical Free Text Annotation Interface with Active Learning and Research Use Case Specific Customisation
%A Searle, Thomas
%A Kraljevic, Zeljko
%A Bendayan, Rebecca
%A Bean, Daniel
%A Dobson, Richard
%Y Padó, Sebastian
%Y Huang, Ruihong
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F searle-etal-2019-medcattrainer
%X An interface for building, improving and customising a given Named Entity Recognition and Linking (NER+L) model for biomedical domain text, and the efficient collation of accurate research use case specific training data and subsequent model training. Screencast demo available here: https://www.youtube.com/watch?v=lM914DQjvSo
%R 10.18653/v1/D19-3024
%U https://aclanthology.org/D19-3024/
%U https://doi.org/10.18653/v1/D19-3024
%P 139-144
Markdown (Informal)
[MedCATTrainer: A Biomedical Free Text Annotation Interface with Active Learning and Research Use Case Specific Customisation](https://aclanthology.org/D19-3024/) (Searle et al., EMNLP-IJCNLP 2019)
ACL