@inproceedings{hartmann-etal-2019-mapping,
title = "Mapping (Dis-)Information Flow about the {MH}17 Plane Crash",
author = "Hartmann, Mareike and
Golovchenko, Yevgeniy and
Augenstein, Isabelle",
editor = "Feldman, Anna and
Da San Martino, Giovanni and
Barr{\'o}n-Cede{\~n}o, Alberto and
Brew, Chris and
Leberknight, Chris and
Nakov, Preslav",
booktitle = "Proceedings of the Second Workshop on Natural Language Processing for Internet Freedom: Censorship, Disinformation, and Propaganda",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5006/",
doi = "10.18653/v1/D19-5006",
pages = "45--55",
abstract = "Digital media enables not only fast sharing of information, but also disinformation. One prominent case of an event leading to circulation of disinformation on social media is the MH17 plane crash. Studies analysing the spread of information about this event on Twitter have focused on small, manually annotated datasets, or used proxys for data annotation. In this work, we examine to what extent text classifiers can be used to label data for subsequent content analysis, in particular we focus on predicting pro-Russian and pro-Ukrainian Twitter content related to the MH17 plane crash. Even though we find that a neural classifier improves over a hashtag based baseline, labeling pro-Russian and pro-Ukrainian content with high precision remains a challenging problem. We provide an error analysis underlining the difficulty of the task and identify factors that might help improve classification in future work. Finally, we show how the classifier can facilitate the annotation task for human annotators."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hartmann-etal-2019-mapping">
<titleInfo>
<title>Mapping (Dis-)Information Flow about the MH17 Plane Crash</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mareike</namePart>
<namePart type="family">Hartmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yevgeniy</namePart>
<namePart type="family">Golovchenko</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Isabelle</namePart>
<namePart type="family">Augenstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on Natural Language Processing for Internet Freedom: Censorship, Disinformation, and Propaganda</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Feldman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giovanni</namePart>
<namePart type="family">Da San Martino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alberto</namePart>
<namePart type="family">Barrón-Cedeño</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Brew</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Leberknight</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Digital media enables not only fast sharing of information, but also disinformation. One prominent case of an event leading to circulation of disinformation on social media is the MH17 plane crash. Studies analysing the spread of information about this event on Twitter have focused on small, manually annotated datasets, or used proxys for data annotation. In this work, we examine to what extent text classifiers can be used to label data for subsequent content analysis, in particular we focus on predicting pro-Russian and pro-Ukrainian Twitter content related to the MH17 plane crash. Even though we find that a neural classifier improves over a hashtag based baseline, labeling pro-Russian and pro-Ukrainian content with high precision remains a challenging problem. We provide an error analysis underlining the difficulty of the task and identify factors that might help improve classification in future work. Finally, we show how the classifier can facilitate the annotation task for human annotators.</abstract>
<identifier type="citekey">hartmann-etal-2019-mapping</identifier>
<identifier type="doi">10.18653/v1/D19-5006</identifier>
<location>
<url>https://aclanthology.org/D19-5006/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>45</start>
<end>55</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Mapping (Dis-)Information Flow about the MH17 Plane Crash
%A Hartmann, Mareike
%A Golovchenko, Yevgeniy
%A Augenstein, Isabelle
%Y Feldman, Anna
%Y Da San Martino, Giovanni
%Y Barrón-Cedeño, Alberto
%Y Brew, Chris
%Y Leberknight, Chris
%Y Nakov, Preslav
%S Proceedings of the Second Workshop on Natural Language Processing for Internet Freedom: Censorship, Disinformation, and Propaganda
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F hartmann-etal-2019-mapping
%X Digital media enables not only fast sharing of information, but also disinformation. One prominent case of an event leading to circulation of disinformation on social media is the MH17 plane crash. Studies analysing the spread of information about this event on Twitter have focused on small, manually annotated datasets, or used proxys for data annotation. In this work, we examine to what extent text classifiers can be used to label data for subsequent content analysis, in particular we focus on predicting pro-Russian and pro-Ukrainian Twitter content related to the MH17 plane crash. Even though we find that a neural classifier improves over a hashtag based baseline, labeling pro-Russian and pro-Ukrainian content with high precision remains a challenging problem. We provide an error analysis underlining the difficulty of the task and identify factors that might help improve classification in future work. Finally, we show how the classifier can facilitate the annotation task for human annotators.
%R 10.18653/v1/D19-5006
%U https://aclanthology.org/D19-5006/
%U https://doi.org/10.18653/v1/D19-5006
%P 45-55
Markdown (Informal)
[Mapping (Dis-)Information Flow about the MH17 Plane Crash](https://aclanthology.org/D19-5006/) (Hartmann et al., NLP4IF 2019)
ACL
- Mareike Hartmann, Yevgeniy Golovchenko, and Isabelle Augenstein. 2019. Mapping (Dis-)Information Flow about the MH17 Plane Crash. In Proceedings of the Second Workshop on Natural Language Processing for Internet Freedom: Censorship, Disinformation, and Propaganda, pages 45–55, Hong Kong, China. Association for Computational Linguistics.