@inproceedings{yoosuf-yang-2019-fine,
title = "Fine-Grained Propaganda Detection with Fine-Tuned {BERT}",
author = "Yoosuf, Shehel and
Yang, Yin",
editor = "Feldman, Anna and
Da San Martino, Giovanni and
Barr{\'o}n-Cede{\~n}o, Alberto and
Brew, Chris and
Leberknight, Chris and
Nakov, Preslav",
booktitle = "Proceedings of the Second Workshop on Natural Language Processing for Internet Freedom: Censorship, Disinformation, and Propaganda",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5011",
doi = "10.18653/v1/D19-5011",
pages = "87--91",
abstract = "This paper presents the winning solution of the Fragment Level Classification (FLC) task in the Fine Grained Propaganda Detection competition at the NLP4IF{'}19 workshop. The goal of the FLC task is to detect and classify textual segments that correspond to one of the 18 given propaganda techniques in a news articles dataset. The main idea of our solution is to perform word-level classification using fine-tuned BERT, a popular pre-trained language model. Besides presenting the model and its evaluation results, we also investigate the attention heads in the model, which provide insights into what the model learns, as well as aspects for potential improvements.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yoosuf-yang-2019-fine">
<titleInfo>
<title>Fine-Grained Propaganda Detection with Fine-Tuned BERT</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shehel</namePart>
<namePart type="family">Yoosuf</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yin</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on Natural Language Processing for Internet Freedom: Censorship, Disinformation, and Propaganda</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Feldman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giovanni</namePart>
<namePart type="family">Da San Martino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alberto</namePart>
<namePart type="family">Barrón-Cedeño</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Brew</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Leberknight</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents the winning solution of the Fragment Level Classification (FLC) task in the Fine Grained Propaganda Detection competition at the NLP4IF’19 workshop. The goal of the FLC task is to detect and classify textual segments that correspond to one of the 18 given propaganda techniques in a news articles dataset. The main idea of our solution is to perform word-level classification using fine-tuned BERT, a popular pre-trained language model. Besides presenting the model and its evaluation results, we also investigate the attention heads in the model, which provide insights into what the model learns, as well as aspects for potential improvements.</abstract>
<identifier type="citekey">yoosuf-yang-2019-fine</identifier>
<identifier type="doi">10.18653/v1/D19-5011</identifier>
<location>
<url>https://aclanthology.org/D19-5011</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>87</start>
<end>91</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Fine-Grained Propaganda Detection with Fine-Tuned BERT
%A Yoosuf, Shehel
%A Yang, Yin
%Y Feldman, Anna
%Y Da San Martino, Giovanni
%Y Barrón-Cedeño, Alberto
%Y Brew, Chris
%Y Leberknight, Chris
%Y Nakov, Preslav
%S Proceedings of the Second Workshop on Natural Language Processing for Internet Freedom: Censorship, Disinformation, and Propaganda
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F yoosuf-yang-2019-fine
%X This paper presents the winning solution of the Fragment Level Classification (FLC) task in the Fine Grained Propaganda Detection competition at the NLP4IF’19 workshop. The goal of the FLC task is to detect and classify textual segments that correspond to one of the 18 given propaganda techniques in a news articles dataset. The main idea of our solution is to perform word-level classification using fine-tuned BERT, a popular pre-trained language model. Besides presenting the model and its evaluation results, we also investigate the attention heads in the model, which provide insights into what the model learns, as well as aspects for potential improvements.
%R 10.18653/v1/D19-5011
%U https://aclanthology.org/D19-5011
%U https://doi.org/10.18653/v1/D19-5011
%P 87-91
Markdown (Informal)
[Fine-Grained Propaganda Detection with Fine-Tuned BERT](https://aclanthology.org/D19-5011) (Yoosuf & Yang, NLP4IF 2019)
ACL
- Shehel Yoosuf and Yin Yang. 2019. Fine-Grained Propaganda Detection with Fine-Tuned BERT. In Proceedings of the Second Workshop on Natural Language Processing for Internet Freedom: Censorship, Disinformation, and Propaganda, pages 87–91, Hong Kong, China. Association for Computational Linguistics.