@inproceedings{ngo-etal-2019-overcoming,
title = "Overcoming the Rare Word Problem for low-resource language pairs in Neural Machine Translation",
author = "Ngo, Thi-Vinh and
Ha, Thanh-Le and
Nguyen, Phuong-Thai and
Nguyen, Le-Minh",
editor = "Nakazawa, Toshiaki and
Ding, Chenchen and
Dabre, Raj and
Kunchukuttan, Anoop and
Doi, Nobushige and
Oda, Yusuke and
Bojar, Ond{\v{r}}ej and
Parida, Shantipriya and
Goto, Isao and
Mino, Hidaya",
booktitle = "Proceedings of the 6th Workshop on Asian Translation",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5228/",
doi = "10.18653/v1/D19-5228",
pages = "207--214",
abstract = "Among the six challenges of neural machine translation (NMT) coined by (Koehn and Knowles, 2017), rare-word problem is considered the most severe one, especially in translation of low-resource languages. In this paper, we propose three solutions to address the rare words in neural machine translation systems. First, we enhance source context to predict the target words by connecting directly the source embeddings to the output of the attention component in NMT. Second, we propose an algorithm to learn morphology of unknown words for English in supervised way in order to minimize the adverse effect of rare-word problem. Finally, we exploit synonymous relation from the WordNet to overcome out-of-vocabulary (OOV) problem of NMT. We evaluate our approaches on two low-resource language pairs: English-Vietnamese and Japanese-Vietnamese. In our experiments, we have achieved significant improvements of up to roughly +1.0 BLEU points in both language pairs."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ngo-etal-2019-overcoming">
<titleInfo>
<title>Overcoming the Rare Word Problem for low-resource language pairs in Neural Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Thi-Vinh</namePart>
<namePart type="family">Ngo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thanh-Le</namePart>
<namePart type="family">Ha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Phuong-Thai</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Le-Minh</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 6th Workshop on Asian Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Toshiaki</namePart>
<namePart type="family">Nakazawa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chenchen</namePart>
<namePart type="family">Ding</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Raj</namePart>
<namePart type="family">Dabre</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anoop</namePart>
<namePart type="family">Kunchukuttan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nobushige</namePart>
<namePart type="family">Doi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Oda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ondřej</namePart>
<namePart type="family">Bojar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shantipriya</namePart>
<namePart type="family">Parida</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Isao</namePart>
<namePart type="family">Goto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hidaya</namePart>
<namePart type="family">Mino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Among the six challenges of neural machine translation (NMT) coined by (Koehn and Knowles, 2017), rare-word problem is considered the most severe one, especially in translation of low-resource languages. In this paper, we propose three solutions to address the rare words in neural machine translation systems. First, we enhance source context to predict the target words by connecting directly the source embeddings to the output of the attention component in NMT. Second, we propose an algorithm to learn morphology of unknown words for English in supervised way in order to minimize the adverse effect of rare-word problem. Finally, we exploit synonymous relation from the WordNet to overcome out-of-vocabulary (OOV) problem of NMT. We evaluate our approaches on two low-resource language pairs: English-Vietnamese and Japanese-Vietnamese. In our experiments, we have achieved significant improvements of up to roughly +1.0 BLEU points in both language pairs.</abstract>
<identifier type="citekey">ngo-etal-2019-overcoming</identifier>
<identifier type="doi">10.18653/v1/D19-5228</identifier>
<location>
<url>https://aclanthology.org/D19-5228/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>207</start>
<end>214</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Overcoming the Rare Word Problem for low-resource language pairs in Neural Machine Translation
%A Ngo, Thi-Vinh
%A Ha, Thanh-Le
%A Nguyen, Phuong-Thai
%A Nguyen, Le-Minh
%Y Nakazawa, Toshiaki
%Y Ding, Chenchen
%Y Dabre, Raj
%Y Kunchukuttan, Anoop
%Y Doi, Nobushige
%Y Oda, Yusuke
%Y Bojar, Ondřej
%Y Parida, Shantipriya
%Y Goto, Isao
%Y Mino, Hidaya
%S Proceedings of the 6th Workshop on Asian Translation
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F ngo-etal-2019-overcoming
%X Among the six challenges of neural machine translation (NMT) coined by (Koehn and Knowles, 2017), rare-word problem is considered the most severe one, especially in translation of low-resource languages. In this paper, we propose three solutions to address the rare words in neural machine translation systems. First, we enhance source context to predict the target words by connecting directly the source embeddings to the output of the attention component in NMT. Second, we propose an algorithm to learn morphology of unknown words for English in supervised way in order to minimize the adverse effect of rare-word problem. Finally, we exploit synonymous relation from the WordNet to overcome out-of-vocabulary (OOV) problem of NMT. We evaluate our approaches on two low-resource language pairs: English-Vietnamese and Japanese-Vietnamese. In our experiments, we have achieved significant improvements of up to roughly +1.0 BLEU points in both language pairs.
%R 10.18653/v1/D19-5228
%U https://aclanthology.org/D19-5228/
%U https://doi.org/10.18653/v1/D19-5228
%P 207-214
Markdown (Informal)
[Overcoming the Rare Word Problem for low-resource language pairs in Neural Machine Translation](https://aclanthology.org/D19-5228/) (Ngo et al., WAT 2019)
ACL