@inproceedings{beck-etal-2019-neural,
title = "Neural Speech Translation using Lattice Transformations and Graph Networks",
author = "Beck, Daniel and
Cohn, Trevor and
Haffari, Gholamreza",
editor = "Ustalov, Dmitry and
Somasundaran, Swapna and
Jansen, Peter and
Glava{\v{s}}, Goran and
Riedl, Martin and
Surdeanu, Mihai and
Vazirgiannis, Michalis",
booktitle = "Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13)",
month = nov,
year = "2019",
address = "Hong Kong",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5304/",
doi = "10.18653/v1/D19-5304",
pages = "26--31",
abstract = "Speech translation systems usually follow a pipeline approach, using word lattices as an intermediate representation. However, previous work assume access to the original transcriptions used to train the ASR system, which can limit applicability in real scenarios. In this work we propose an approach for speech translation through lattice transformations and neural models based on graph networks. Experimental results show that our approach reaches competitive performance without relying on transcriptions, while also being orders of magnitude faster than previous work."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="beck-etal-2019-neural">
<titleInfo>
<title>Neural Speech Translation using Lattice Transformations and Graph Networks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Beck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gholamreza</namePart>
<namePart type="family">Haffari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dmitry</namePart>
<namePart type="family">Ustalov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Swapna</namePart>
<namePart type="family">Somasundaran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peter</namePart>
<namePart type="family">Jansen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Goran</namePart>
<namePart type="family">Glavaš</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martin</namePart>
<namePart type="family">Riedl</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mihai</namePart>
<namePart type="family">Surdeanu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michalis</namePart>
<namePart type="family">Vazirgiannis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Speech translation systems usually follow a pipeline approach, using word lattices as an intermediate representation. However, previous work assume access to the original transcriptions used to train the ASR system, which can limit applicability in real scenarios. In this work we propose an approach for speech translation through lattice transformations and neural models based on graph networks. Experimental results show that our approach reaches competitive performance without relying on transcriptions, while also being orders of magnitude faster than previous work.</abstract>
<identifier type="citekey">beck-etal-2019-neural</identifier>
<identifier type="doi">10.18653/v1/D19-5304</identifier>
<location>
<url>https://aclanthology.org/D19-5304/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>26</start>
<end>31</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Neural Speech Translation using Lattice Transformations and Graph Networks
%A Beck, Daniel
%A Cohn, Trevor
%A Haffari, Gholamreza
%Y Ustalov, Dmitry
%Y Somasundaran, Swapna
%Y Jansen, Peter
%Y Glavaš, Goran
%Y Riedl, Martin
%Y Surdeanu, Mihai
%Y Vazirgiannis, Michalis
%S Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong
%F beck-etal-2019-neural
%X Speech translation systems usually follow a pipeline approach, using word lattices as an intermediate representation. However, previous work assume access to the original transcriptions used to train the ASR system, which can limit applicability in real scenarios. In this work we propose an approach for speech translation through lattice transformations and neural models based on graph networks. Experimental results show that our approach reaches competitive performance without relying on transcriptions, while also being orders of magnitude faster than previous work.
%R 10.18653/v1/D19-5304
%U https://aclanthology.org/D19-5304/
%U https://doi.org/10.18653/v1/D19-5304
%P 26-31
Markdown (Informal)
[Neural Speech Translation using Lattice Transformations and Graph Networks](https://aclanthology.org/D19-5304/) (Beck et al., TextGraphs 2019)
ACL