@inproceedings{ma-etal-2019-essentia,
title = "{E}ssentia: Mining Domain-specific Paraphrases with Word-Alignment Graphs",
author = "Ma, Danni and
Chen, Chen and
Golshan, Behzad and
Tan, Wang-Chiew",
editor = "Ustalov, Dmitry and
Somasundaran, Swapna and
Jansen, Peter and
Glava{\v{s}}, Goran and
Riedl, Martin and
Surdeanu, Mihai and
Vazirgiannis, Michalis",
booktitle = "Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13)",
month = nov,
year = "2019",
address = "Hong Kong",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5307",
doi = "10.18653/v1/D19-5307",
pages = "52--57",
abstract = "Paraphrases are important linguistic resources for a wide variety of NLP applications. Many techniques for automatic paraphrase mining from general corpora have been proposed. While these techniques are successful at discovering generic paraphrases, they often fail to identify domain-specific paraphrases (e.g., {staff, concierge} in the hospitality domain). This is because current techniques are often based on statistical methods, while domain-specific corpora are too small to fit statistical methods. In this paper, we present an unsupervised graph-based technique to mine paraphrases from a small set of sentences that roughly share the same topic or intent. Our system, Essentia, relies on word-alignment techniques to create a word-alignment graph that merges and organizes tokens from input sentences. The resulting graph is then used to generate candidate paraphrases. We demonstrate that our system obtains high quality paraphrases, as evaluated by crowd workers. We further show that the majority of the identified paraphrases are domain-specific and thus complement existing paraphrase databases.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ma-etal-2019-essentia">
<titleInfo>
<title>Essentia: Mining Domain-specific Paraphrases with Word-Alignment Graphs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Danni</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chen</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Behzad</namePart>
<namePart type="family">Golshan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wang-Chiew</namePart>
<namePart type="family">Tan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dmitry</namePart>
<namePart type="family">Ustalov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Swapna</namePart>
<namePart type="family">Somasundaran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peter</namePart>
<namePart type="family">Jansen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Goran</namePart>
<namePart type="family">Glavaš</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martin</namePart>
<namePart type="family">Riedl</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mihai</namePart>
<namePart type="family">Surdeanu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michalis</namePart>
<namePart type="family">Vazirgiannis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Paraphrases are important linguistic resources for a wide variety of NLP applications. Many techniques for automatic paraphrase mining from general corpora have been proposed. While these techniques are successful at discovering generic paraphrases, they often fail to identify domain-specific paraphrases (e.g., staff, concierge in the hospitality domain). This is because current techniques are often based on statistical methods, while domain-specific corpora are too small to fit statistical methods. In this paper, we present an unsupervised graph-based technique to mine paraphrases from a small set of sentences that roughly share the same topic or intent. Our system, Essentia, relies on word-alignment techniques to create a word-alignment graph that merges and organizes tokens from input sentences. The resulting graph is then used to generate candidate paraphrases. We demonstrate that our system obtains high quality paraphrases, as evaluated by crowd workers. We further show that the majority of the identified paraphrases are domain-specific and thus complement existing paraphrase databases.</abstract>
<identifier type="citekey">ma-etal-2019-essentia</identifier>
<identifier type="doi">10.18653/v1/D19-5307</identifier>
<location>
<url>https://aclanthology.org/D19-5307</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>52</start>
<end>57</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Essentia: Mining Domain-specific Paraphrases with Word-Alignment Graphs
%A Ma, Danni
%A Chen, Chen
%A Golshan, Behzad
%A Tan, Wang-Chiew
%Y Ustalov, Dmitry
%Y Somasundaran, Swapna
%Y Jansen, Peter
%Y Glavaš, Goran
%Y Riedl, Martin
%Y Surdeanu, Mihai
%Y Vazirgiannis, Michalis
%S Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong
%F ma-etal-2019-essentia
%X Paraphrases are important linguistic resources for a wide variety of NLP applications. Many techniques for automatic paraphrase mining from general corpora have been proposed. While these techniques are successful at discovering generic paraphrases, they often fail to identify domain-specific paraphrases (e.g., staff, concierge in the hospitality domain). This is because current techniques are often based on statistical methods, while domain-specific corpora are too small to fit statistical methods. In this paper, we present an unsupervised graph-based technique to mine paraphrases from a small set of sentences that roughly share the same topic or intent. Our system, Essentia, relies on word-alignment techniques to create a word-alignment graph that merges and organizes tokens from input sentences. The resulting graph is then used to generate candidate paraphrases. We demonstrate that our system obtains high quality paraphrases, as evaluated by crowd workers. We further show that the majority of the identified paraphrases are domain-specific and thus complement existing paraphrase databases.
%R 10.18653/v1/D19-5307
%U https://aclanthology.org/D19-5307
%U https://doi.org/10.18653/v1/D19-5307
%P 52-57
Markdown (Informal)
[Essentia: Mining Domain-specific Paraphrases with Word-Alignment Graphs](https://aclanthology.org/D19-5307) (Ma et al., TextGraphs 2019)
ACL