@inproceedings{schwarzenberg-etal-2019-layerwise,
    title = "Layerwise Relevance Visualization in Convolutional Text Graph Classifiers",
    author = {Schwarzenberg, Robert  and
      H{\"u}bner, Marc  and
      Harbecke, David  and
      Alt, Christoph  and
      Hennig, Leonhard},
    editor = "Ustalov, Dmitry  and
      Somasundaran, Swapna  and
      Jansen, Peter  and
      Glava{\v{s}}, Goran  and
      Riedl, Martin  and
      Surdeanu, Mihai  and
      Vazirgiannis, Michalis",
    booktitle = "Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13)",
    month = nov,
    year = "2019",
    address = "Hong Kong",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/D19-5308/",
    doi = "10.18653/v1/D19-5308",
    pages = "58--62",
    abstract = "Representations in the hidden layers of Deep Neural Networks (DNN) are often hard to interpret since it is difficult to project them into an interpretable domain. Graph Convolutional Networks (GCN) allow this projection, but existing explainability methods do not exploit this fact, i.e. do not focus their explanations on intermediate states. In this work, we present a novel method that traces and visualizes features that contribute to a classification decision in the visible and hidden layers of a GCN. Our method exposes hidden cross-layer dynamics in the input graph structure. We experimentally demonstrate that it yields meaningful layerwise explanations for a GCN sentence classifier."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="schwarzenberg-etal-2019-layerwise">
    <titleInfo>
        <title>Layerwise Relevance Visualization in Convolutional Text Graph Classifiers</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Robert</namePart>
        <namePart type="family">Schwarzenberg</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Marc</namePart>
        <namePart type="family">Hübner</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">David</namePart>
        <namePart type="family">Harbecke</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Christoph</namePart>
        <namePart type="family">Alt</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Leonhard</namePart>
        <namePart type="family">Hennig</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-11</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13)</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Dmitry</namePart>
            <namePart type="family">Ustalov</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Swapna</namePart>
            <namePart type="family">Somasundaran</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Peter</namePart>
            <namePart type="family">Jansen</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Goran</namePart>
            <namePart type="family">Glavaš</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Martin</namePart>
            <namePart type="family">Riedl</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Mihai</namePart>
            <namePart type="family">Surdeanu</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Michalis</namePart>
            <namePart type="family">Vazirgiannis</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Hong Kong</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>Representations in the hidden layers of Deep Neural Networks (DNN) are often hard to interpret since it is difficult to project them into an interpretable domain. Graph Convolutional Networks (GCN) allow this projection, but existing explainability methods do not exploit this fact, i.e. do not focus their explanations on intermediate states. In this work, we present a novel method that traces and visualizes features that contribute to a classification decision in the visible and hidden layers of a GCN. Our method exposes hidden cross-layer dynamics in the input graph structure. We experimentally demonstrate that it yields meaningful layerwise explanations for a GCN sentence classifier.</abstract>
    <identifier type="citekey">schwarzenberg-etal-2019-layerwise</identifier>
    <identifier type="doi">10.18653/v1/D19-5308</identifier>
    <location>
        <url>https://aclanthology.org/D19-5308/</url>
    </location>
    <part>
        <date>2019-11</date>
        <extent unit="page">
            <start>58</start>
            <end>62</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Layerwise Relevance Visualization in Convolutional Text Graph Classifiers
%A Schwarzenberg, Robert
%A Hübner, Marc
%A Harbecke, David
%A Alt, Christoph
%A Hennig, Leonhard
%Y Ustalov, Dmitry
%Y Somasundaran, Swapna
%Y Jansen, Peter
%Y Glavaš, Goran
%Y Riedl, Martin
%Y Surdeanu, Mihai
%Y Vazirgiannis, Michalis
%S Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong
%F schwarzenberg-etal-2019-layerwise
%X Representations in the hidden layers of Deep Neural Networks (DNN) are often hard to interpret since it is difficult to project them into an interpretable domain. Graph Convolutional Networks (GCN) allow this projection, but existing explainability methods do not exploit this fact, i.e. do not focus their explanations on intermediate states. In this work, we present a novel method that traces and visualizes features that contribute to a classification decision in the visible and hidden layers of a GCN. Our method exposes hidden cross-layer dynamics in the input graph structure. We experimentally demonstrate that it yields meaningful layerwise explanations for a GCN sentence classifier.
%R 10.18653/v1/D19-5308
%U https://aclanthology.org/D19-5308/
%U https://doi.org/10.18653/v1/D19-5308
%P 58-62
Markdown (Informal)
[Layerwise Relevance Visualization in Convolutional Text Graph Classifiers](https://aclanthology.org/D19-5308/) (Schwarzenberg et al., TextGraphs 2019)
ACL