@inproceedings{federmann-etal-2019-multilingual,
    title = "Multilingual Whispers: Generating Paraphrases with Translation",
    author = "Federmann, Christian  and
      Elachqar, Oussama  and
      Quirk, Chris",
    editor = "Xu, Wei  and
      Ritter, Alan  and
      Baldwin, Tim  and
      Rahimi, Afshin",
    booktitle = "Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)",
    month = nov,
    year = "2019",
    address = "Hong Kong, China",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/D19-5503/",
    doi = "10.18653/v1/D19-5503",
    pages = "17--26",
    abstract = "Naturally occurring paraphrase data, such as multiple news stories about the same event, is a useful but rare resource. This paper compares translation-based paraphrase gathering using human, automatic, or hybrid techniques to monolingual paraphrasing by experts and non-experts. We gather translations, paraphrases, and empirical human quality assessments of these approaches. Neural machine translation techniques, especially when pivoting through related languages, provide a relatively robust source of paraphrases with diversity comparable to expert human paraphrases. Surprisingly, human translators do not reliably outperform neural systems. The resulting data release will not only be a useful test set, but will also allow additional explorations in translation and paraphrase quality assessments and relationships."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="federmann-etal-2019-multilingual">
    <titleInfo>
        <title>Multilingual Whispers: Generating Paraphrases with Translation</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Christian</namePart>
        <namePart type="family">Federmann</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Oussama</namePart>
        <namePart type="family">Elachqar</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Chris</namePart>
        <namePart type="family">Quirk</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-11</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Wei</namePart>
            <namePart type="family">Xu</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Alan</namePart>
            <namePart type="family">Ritter</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Tim</namePart>
            <namePart type="family">Baldwin</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Afshin</namePart>
            <namePart type="family">Rahimi</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Hong Kong, China</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>Naturally occurring paraphrase data, such as multiple news stories about the same event, is a useful but rare resource. This paper compares translation-based paraphrase gathering using human, automatic, or hybrid techniques to monolingual paraphrasing by experts and non-experts. We gather translations, paraphrases, and empirical human quality assessments of these approaches. Neural machine translation techniques, especially when pivoting through related languages, provide a relatively robust source of paraphrases with diversity comparable to expert human paraphrases. Surprisingly, human translators do not reliably outperform neural systems. The resulting data release will not only be a useful test set, but will also allow additional explorations in translation and paraphrase quality assessments and relationships.</abstract>
    <identifier type="citekey">federmann-etal-2019-multilingual</identifier>
    <identifier type="doi">10.18653/v1/D19-5503</identifier>
    <location>
        <url>https://aclanthology.org/D19-5503/</url>
    </location>
    <part>
        <date>2019-11</date>
        <extent unit="page">
            <start>17</start>
            <end>26</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multilingual Whispers: Generating Paraphrases with Translation
%A Federmann, Christian
%A Elachqar, Oussama
%A Quirk, Chris
%Y Xu, Wei
%Y Ritter, Alan
%Y Baldwin, Tim
%Y Rahimi, Afshin
%S Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F federmann-etal-2019-multilingual
%X Naturally occurring paraphrase data, such as multiple news stories about the same event, is a useful but rare resource. This paper compares translation-based paraphrase gathering using human, automatic, or hybrid techniques to monolingual paraphrasing by experts and non-experts. We gather translations, paraphrases, and empirical human quality assessments of these approaches. Neural machine translation techniques, especially when pivoting through related languages, provide a relatively robust source of paraphrases with diversity comparable to expert human paraphrases. Surprisingly, human translators do not reliably outperform neural systems. The resulting data release will not only be a useful test set, but will also allow additional explorations in translation and paraphrase quality assessments and relationships.
%R 10.18653/v1/D19-5503
%U https://aclanthology.org/D19-5503/
%U https://doi.org/10.18653/v1/D19-5503
%P 17-26
Markdown (Informal)
[Multilingual Whispers: Generating Paraphrases with Translation](https://aclanthology.org/D19-5503/) (Federmann et al., WNUT 2019)
ACL