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Abstract

In this paper, we investigate the modeling
power of contextualized embeddings from pre-
trained language models, e.g. BERT, on the
E2E-ABSA task. Specifically, we build a
series of simple yet insightful neural base-
lines to deal with E2E-ABSA. The experimen-
tal results show that even with a simple lin-
ear classification layer, our BERT-based archi-
tecture can outperform state-of-the-art works.
Besides, we also standardize the comparative
study by consistently utilizing a hold-out de-
velopment dataset for model selection, which
is largely ignored by previous works. There-
fore, our work can serve as a BERT-based
benchmark for E2E-ABSA.1

1 Introduction

Aspect-based sentiment analysis (ABSA) is to dis-
cover the users’ sentiment or opinion towards an
aspect, usually in the form of explicitly men-
tioned aspect terms (Mitchell et al., 2013; Zhang
et al., 2015) or implicit aspect categories (Wang
et al., 2016), from user-generated natural language
texts (Liu, 2012). The most popular ABSA bench-
mark datasets are from SemEval ABSA chal-
lenges (Pontiki et al., 2014, 2015, 2016) where a
few thousand review sentences with gold standard
aspect sentiment annotations are provided.

Table 1 summarizes three existing research
problems related to ABSA. The first one is the
original ABSA, aiming at predicting the senti-
ment polarity of the sentence towards the given
aspect. Compared to this classification problem,
the second one and the third one, namely, Aspect-
oriented Opinion Words Extraction (AOWE) (Fan

∗The work described in this paper is substantially sup-
ported by a grant from the Research Grant Council of the
Hong Kong Special Administrative Region, China (Project
Code: 14204418).

1Our code is open-source and available at: https://
github.com/lixin4ever/BERT-E2E-ABSA

et al., 2019) and End-to-End Aspect-based Sen-
timent Analysis (E2E-ABSA) (Ma et al., 2018a;
Schmitt et al., 2018; Li et al., 2019a; Li and Lu,
2017, 2019), are related to a sequence tagging
problem. Precisely, the goal of AOWE is to ex-
tract the aspect-specific opinion words from the
sentence given the aspect. The goal of E2E-ABSA
is to jointly detect aspect terms/categories and the
corresponding aspect sentiments.

Many neural models composed of a task-
agnostic pre-trained word embedding layer and
task-specific neural architecture have been pro-
posed for the original ABSA task (i.e. the aspect-
level sentiment classification) (Tang et al., 2016;
Wang et al., 2016; Chen et al., 2017; Liu and
Zhang, 2017; Ma et al., 2017, 2018b; Majumder
et al., 2018; Li et al., 2018; He et al., 2018;
Xue and Li, 2018; Wang et al., 2018; Fan et al.,
2018; Huang and Carley, 2018; Lei et al., 2019;
Li et al., 2019b)2, but the improvement of these
models measured by the accuracy or F1 score
has reached a bottleneck. One reason is that the
task-agnostic embedding layer, usually a linear
layer initialized with Word2Vec (Mikolov et al.,
2013) or GloVe (Pennington et al., 2014), only
provides context-independent word-level features,
which is insufficient for capturing the complex se-
mantic dependencies in the sentence. Meanwhile,
the size of existing datasets is too small to train
sophisticated task-specific architectures. Thus,
introducing a context-aware word embedding3

layer pre-trained on large-scale datasets with deep
LSTM (McCann et al., 2017; Peters et al., 2018;
Howard and Ruder, 2018) or Transformer (Rad-
ford et al., 2018, 2019; Devlin et al., 2019; Lample

2Due to the limited space, we can not list all of the existing
works here, please refer to the survey (Zhou et al., 2019) for
more related papers.

3In this paper, we generalize the concept of “word em-
bedding” as a mapping between the word and the low-
dimensional word representations.

https://github.com/lixin4ever/BERT-E2E-ABSA
https://github.com/lixin4ever/BERT-E2E-ABSA
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Sentence:
<Great> [food]P but the
[
::::::
service]N is <

:::::::::::
dreadful>.

Settings Input Output
1. ABSA sentence, aspect aspect sentiment
2. AOWE sentence, aspect opinion words
3. E2E-ABSA sentence aspect, aspect sentiment

Table 1: Different problem settings in ABSA. Gold
standard aspects and opinions are wrapped in [] and
<> respectively. The subscripts N and P refer to aspect
sentiment. Underline

:
* or * indicates the association

between the aspect and the opinion.

and Conneau, 2019; Yang et al., 2019; Dong et al.,
2019) for fine-tuning a lightweight task-specific
network using the labeled data has good potential
for further enhancing the performance.

Xu et al. (2019); Sun et al. (2019); Song et al.
(2019); Yu and Jiang (2019); Rietzler et al. (2019);
Huang and Carley (2019) have conducted some
initial attempts to couple the deep contextualized
word embedding layer with downstream neural
models for the original ABSA task and establish
the new state-of-the-art results. It encourages us
to explore the potential of using such contextual-
ized embeddings to the more difficult but practi-
cal task, i.e. E2E-ABSA (the third setting in Ta-
ble 1).4 Note that we are not aiming at developing
a task-specific architecture, instead, our focus is
to examine the potential of contextualized embed-
ding for E2E-ABSA, coupled with various simple
layers for prediction of E2E-ABSA labels.5

In this paper, we investigate the modeling power
of BERT (Devlin et al., 2019), one of the most
popular pre-trained language model armed with
Transformer (Vaswani et al., 2017), on the task
of E2E-ABSA. Concretely, inspired by the inves-
tigation of E2E-ABSA in Li et al. (2019a), which
predicts aspect boundaries as well as aspect sen-
timents using a single sequence tagger, we build
a series of simple yet insightful neural baselines
for the sequence labeling problem and fine-tune
the task-specific components with BERT or deem
BERT as feature extractor. Besides, we standard-
ize the comparative study by consistently utiliz-
ing the hold-out development dataset for model
selection, which is ignored in most of the existing

4Both of ABSA and AOWE assume that the aspects in a
sentence are given. Such setting makes them less practical
in real-world scenarios since manual annotation of the fine-
grained aspect mentions/categories is quite expensive.

5Hu et al. (2019) introduce BERT to handle the E2E-
ABSA problem but their focus is to design a task-specific
architecture rather than exploring the potential of BERT.
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Figure 1: Overview of the designed model.

ABSA works (Tay et al., 2018).

2 Model

In this paper, we focus on the aspect term-
level End-to-End Aspect-Based Sentiment Analy-
sis (E2E-ABSA) problem setting. This task can
be formulated as a sequence labeling problem.
The overall architecture of our model is depicted
in Figure 1. Given the input token sequence
x = {x1, · · · , xT } of length T , we firstly em-
ploy BERT component with L transformer lay-
ers to calculate the corresponding contextualized
representations HL = {hL1 , · · · , hLT } ∈ RT×dimh

for the input tokens where dimh denotes the di-
mension of the representation vector. Then, the
contextualized representations are fed to the task-
specific layers to predict the tag sequence y =
{y1, · · · , yT }. The possible values of the tag yt
are B-{POS,NEG,NEU}, I-{POS,NEG,NEU},
E-{POS,NEG,NEU}, S-{POS,NEG,NEU} or O,
denoting the beginning of aspect, inside of aspect,
end of aspect, single-word aspect, with positive,
negative or neutral sentiment respectively, as well
as outside of aspect.

2.1 BERT as Embedding Layer

Compared to the traditional Word2Vec- or GloVe-
based embedding layer which only provides a sin-
gle context-independent representation for each
token, the BERT embedding layer takes the sen-
tence as input and calculates the token-level rep-
resentations using the information from the entire
sentence. First of all, we pack the input features
as H0 = {e1, · · · , eT }, where et (t ∈ [1, T ]) is
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the combination of the token embedding, position
embedding and segment embedding correspond-
ing to the input token xt. Then L transformer
layers are introduced to refine the token-level fea-
tures layer by layer. Specifically, the representa-
tions H l = {hl1, · · · , hlT } at the l-th (l ∈ [1, L])
layer are calculated below:

H l = Transformerl(H l−1) (1)

We regard HL as the contextualized representa-
tions of the input tokens and use them to perform
the predictions for the downstream task.

2.2 Design of Downstream Model
After obtaining the BERT representations, we de-
sign a neural layer, called E2E-ABSA layer in
Figure 1, on top of BERT embedding layer for
solving the task of E2E-ABSA. We investigate
several different design for the E2E-ABSA layer,
namely, linear layer, recurrent neural networks,
self-attention networks, and conditional random
fields layer.

Linear Layer The obtained token representa-
tions can be directly fed to linear layer with soft-
max activation function to calculate the token-
level predictions:

P (yt|xt) = softmax(Woh
L
t + bo) (2)

where Wo ∈ Rdimh×|Y| is the learnable parame-
ters of the linear layer.

Recurrent Neural Networks Considering its
sequence labeling formulation, Recurrent Neural
Networks (RNN) (Elman, 1990) is a natural so-
lution for the task of E2E-ABSA. In this paper,
we adopt GRU (Cho et al., 2014), whose superior-
ity compared to LSTM (Hochreiter and Schmid-
huber, 1997) and basic RNN has been verified
in Jozefowicz et al. (2015). The computational
formula of the task-specific hidden representation
hTt ∈ Rdimh at the t-th time step is shown below:[

rt
zt

]
= σ(LN(Wxh

L
t ) + LN(Whh

T
t−1))

nt = tanh(LN(Wxnh
L
t ) + rt ∗ LN(Whnh

T
t−1))

hTt = (1− zt) ∗ nt + zt ∗ hTt−1

(3)

where σ is the sigmoid activation function and
rt, zt, nt respectively denote the reset gate, up-
date gate and new gate. Wx,Wh ∈ R2dimh×dimh ,
Wxn,Whn ∈ Rdimh×dimh are the parameters of

GRU. Since directly applying RNN on the out-
put of transformer, namely, the BERT represen-
tation hLt , may lead to unstable training (Chen
et al., 2018; Liu, 2019), we add additional layer-
normalization (Ba et al., 2016), denoted as LN,
when calculating the gates. Then, the predictions
are obtained by introducing a softmax layer:

p(yt|xt) = softmax(Woh
T
t + bo) (4)

Self-Attention Networks With the help of self
attention (Cheng et al., 2016; Lin et al., 2017),
Self-Attention Network (Vaswani et al., 2017;
Shen et al., 2018) is another effective feature ex-
tractor apart from RNN and CNN. In this pa-
per, we introduce two SAN variants to build
the task-specific token representations HT =
{hT1 , · · · , hTT }. One variant is composed of a
simple self-attention layer and residual connec-
tion (He et al., 2016), dubbed as “SAN”. The com-
putational process of SAN is below:

HT = LN(HL + SLF-ATT(Q,K, V ))

Q,K, V = HLWQ, HLWK , HLW V
(5)

where SLF-ATT is identical to the self-attentive
scaled dot-product attention (Vaswani et al.,
2017). Another variant is a transformer layer
(dubbed as “TFM”), which has the same archi-
tecture with the transformer encoder layer in the
BERT. The computational process of TFM is as
follows:

ĤL = LN(HL + SLF-ATT(Q,K, V ))

HT = LN(ĤL + FFN(ĤL))
(6)

where FFN refers to the point-wise feed-forward
networks (Vaswani et al., 2017). Again, a linear
layer with softmax activation is stacked on the de-
signed SAN/TFM layer to output the predictions
(same with that in Eq(4)).

Conditional Random Fields Conditional Ran-
dom Fields (CRF) (Lafferty et al., 2001) is effec-
tive in sequence modeling and has been widely
adopted for solving the sequence labeling tasks
together with neural models (Huang et al., 2015;
Lample et al., 2016; Ma and Hovy, 2016). In
this paper, we introduce a linear-chain CRF layer
on top of the BERT embedding layer. Different
from the above mentioned neural models max-
imizing the token-level likelihood p(yt|xt), the
CRF-based model aims to find the globally most
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Model
LAPTOP REST

P R F1 P R F1

Existing Models
(Li et al., 2019a)\ 61.27 54.89 57.90 68.64 71.01 69.80
(Luo et al., 2019)\ - - 60.35 - - 72.78
(He et al., 2019)\ - - 58.37 - - -

LSTM-CRF
(Lample et al., 2016)] 58.61 50.47 54.24 66.10 66.30 66.20
(Ma and Hovy, 2016)] 58.66 51.26 54.71 61.56 67.26 64.29
(Liu et al., 2018)] 53.31 59.40 56.19 68.46 64.43 66.38

BERT Models

BERT+Linear 62.16 58.90 60.43 71.42 75.25 73.22
BERT+GRU 61.88 60.47 61.12 70.61 76.20 73.24
BERT+SAN 62.42 58.71 60.49 72.92 76.72 74.72
BERT+TFM 63.23 58.64 60.80 72.39 76.64 74.41
BERT+CRF 62.22 59.49 60.78 71.88 76.48 74.06

Table 2: Main results. The symbol \ denotes the numbers are officially reported ones. The results with ] are
retrieved from Li et al. (2019a).

Dataset Train Dev Test Total

LAPTOP
# sent 2741 304 800 4245
# aspect 2041 256 634 2931

REST
# sent 3490 387 2158 6035
# aspect 3893 413 2287 6593

Table 3: Statistics of datasets.

probable tag sequence. Specifically, the sequence-
level scores s(x,y) and likelihood p(y|x) of y =
{y1, · · · , yT } are calculated as follows:

s(x,y) =
T∑
t=0

MA
yt,yt+1

+
T∑
t=1

MP
t,yt

p(y|x) = softmax(s(x,y))

(7)

where MA ∈ R|Y|×|Y| is the randomly initialized
transition matrix for modeling the dependency be-
tween the adjacent predictions and MP ∈ RT×|Y|

denote the emission matrix linearly transformed
from the BERT representations HL. The softmax
here is conducted over all of the possible tag se-
quences. As for the decoding, we regard the tag
sequence with the highest scores as output:

y∗ = argmax
y

s(x,y) (8)

where the solution is obtained via Viterbi search.

3 Experiment

3.1 Dataset and Settings
We conduct experiments on two review datasets
originating from SemEval (Pontiki et al., 2014,
2015, 2016) but re-prepared in Li et al. (2019a).
The statistics are summarized in Table 3. We
use the pre-trained “bert-base-uncased” model6,

6https://github.com/huggingface/transformers
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Figure 2: Performances on the Dev set of REST.

where the number of transformer layers L = 12
and the hidden size dimh is 768. For the down-
stream E2E-ABSA component, we consistently
use the single-layer architecture and set the dimen-
sion of task-specific representation as dimh. The
learning rate is 2e-5. The batch size is set as 25 for
LAPTOP and 16 for REST. We train the model up
to 1500 steps. After training 1000 steps, we con-
duct model selection on the development set for
very 100 steps according to the micro-averaged F1
score. Following these settings, we train 5 models
with different random seeds and report the average
results.

We compare with Existing Models, including
tailor-made E2E-ABSA models (Li et al., 2019a;
Luo et al., 2019; He et al., 2019), and competitive
LSTM-CRF sequence labeling models (Lample
et al., 2016; Ma and Hovy, 2016; Liu et al., 2018).

3.2 Main Results

From Table 2, we surprisingly find that only in-
troducing a simple token-level classifier, namely,
BERT-Linear, already outperforms the existing
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Figure 3: Effect of fine-tuning BERT.

works without using BERT, suggesting that BERT
representations encoding the associations between
arbitrary two tokens largely alleviate the issue of
context independence in the linear E2E-ABSA
layer. It is also observed that slightly more pow-
erful E2E-ABSA layers lead to much better per-
formance, verifying the postulation that incorpo-
rating context helps to sequence modeling.

3.3 Over-parameterization Issue

Although we employ the smallest pre-trained
BERT model, it is still over-parameterized for the
E2E-ABSA task (110M parameters), which natu-
rally raises a question: does BERT-based model
tend to overfit the small training set? Following
this question, we train BERT-GRU, BERT-TFM
and BERT-CRF up to 3000 steps on REST and ob-
serve the fluctuation of the F1 measures on the de-
velopment set. As shown in Figure 2, F1 scores on
the development set are quite stable and do not de-
crease much as the training proceeds, which shows
that the BERT-based model is exceptionally robust
to overfitting.

3.4 Finetuning BERT or Not

We also study the impact of fine-tuning on the fi-
nal performances. Specifically, we employ BERT
to calculate the contextualized token-level repre-
sentations but kept the parameters of BERT com-
ponent unchanged in the training phase. Fig-
ure 3 illustrate the comparative results between
the BERT-based models and those keeping BERT
component fixed. Obviously, the general purpose
BERT representation is far from satisfactory for
the downstream tasks and task-specific fine-tuning
is essential for exploiting the strengths of BERT to
improve the performance.

4 Conclusion

In this paper, we investigate the effectiveness of
BERT embedding component on the task of End-
to-End Aspect-Based Sentiment Analysis (E2E-
ABSA). Specifically, we explore to couple the
BERT embedding component with various neu-
ral models and conduct extensive experiments on
two benchmark datasets. The experimental results
demonstrate the superiority of BERT-based mod-
els on capturing aspect-based sentiment and their
robustness to overfitting.
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