@inproceedings{adouane-etal-2019-normalising,
title = "Normalising Non-standardised Orthography in {A}lgerian Code-switched User-generated Data",
author = "Adouane, Wafia and
Bernardy, Jean-Philippe and
Dobnik, Simon",
editor = "Xu, Wei and
Ritter, Alan and
Baldwin, Tim and
Rahimi, Afshin",
booktitle = "Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5518/",
doi = "10.18653/v1/D19-5518",
pages = "131--140",
abstract = "We work with Algerian, an under-resourced non-standardised Arabic variety, for which we compile a new parallel corpus consisting of user-generated textual data matched with normalised and corrected human annotations following data-driven and our linguistically motivated standard. We use an end-to-end deep neural model designed to deal with context-dependent spelling correction and normalisation. Results indicate that a model with two CNN sub-network encoders and an LSTM decoder performs the best, and that word context matters. Additionally, pre-processing data token-by-token with an edit-distance based aligner significantly improves the performance. We get promising results for the spelling correction and normalisation, as a pre-processing step for downstream tasks, on detecting binary Semantic Textual Similarity."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="adouane-etal-2019-normalising">
<titleInfo>
<title>Normalising Non-standardised Orthography in Algerian Code-switched User-generated Data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wafia</namePart>
<namePart type="family">Adouane</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jean-Philippe</namePart>
<namePart type="family">Bernardy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Dobnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tim</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Afshin</namePart>
<namePart type="family">Rahimi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We work with Algerian, an under-resourced non-standardised Arabic variety, for which we compile a new parallel corpus consisting of user-generated textual data matched with normalised and corrected human annotations following data-driven and our linguistically motivated standard. We use an end-to-end deep neural model designed to deal with context-dependent spelling correction and normalisation. Results indicate that a model with two CNN sub-network encoders and an LSTM decoder performs the best, and that word context matters. Additionally, pre-processing data token-by-token with an edit-distance based aligner significantly improves the performance. We get promising results for the spelling correction and normalisation, as a pre-processing step for downstream tasks, on detecting binary Semantic Textual Similarity.</abstract>
<identifier type="citekey">adouane-etal-2019-normalising</identifier>
<identifier type="doi">10.18653/v1/D19-5518</identifier>
<location>
<url>https://aclanthology.org/D19-5518/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>131</start>
<end>140</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Normalising Non-standardised Orthography in Algerian Code-switched User-generated Data
%A Adouane, Wafia
%A Bernardy, Jean-Philippe
%A Dobnik, Simon
%Y Xu, Wei
%Y Ritter, Alan
%Y Baldwin, Tim
%Y Rahimi, Afshin
%S Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F adouane-etal-2019-normalising
%X We work with Algerian, an under-resourced non-standardised Arabic variety, for which we compile a new parallel corpus consisting of user-generated textual data matched with normalised and corrected human annotations following data-driven and our linguistically motivated standard. We use an end-to-end deep neural model designed to deal with context-dependent spelling correction and normalisation. Results indicate that a model with two CNN sub-network encoders and an LSTM decoder performs the best, and that word context matters. Additionally, pre-processing data token-by-token with an edit-distance based aligner significantly improves the performance. We get promising results for the spelling correction and normalisation, as a pre-processing step for downstream tasks, on detecting binary Semantic Textual Similarity.
%R 10.18653/v1/D19-5518
%U https://aclanthology.org/D19-5518/
%U https://doi.org/10.18653/v1/D19-5518
%P 131-140
Markdown (Informal)
[Normalising Non-standardised Orthography in Algerian Code-switched User-generated Data](https://aclanthology.org/D19-5518/) (Adouane et al., WNUT 2019)
ACL