@inproceedings{heidenreich-williams-2019-latent,
title = "Latent semantic network induction in the context of linked example senses",
author = "Heidenreich, Hunter and
Williams, Jake",
editor = "Xu, Wei and
Ritter, Alan and
Baldwin, Tim and
Rahimi, Afshin",
booktitle = "Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5523",
doi = "10.18653/v1/D19-5523",
pages = "170--180",
abstract = "The Princeton WordNet is a powerful tool for studying language and developing natural language processing algorithms. With significant work developing it further, one line considers its extension through aligning its expert-annotated structure with other lexical resources. In contrast, this work explores a completely data-driven approach to network construction, forming a wordnet using the entirety of the open-source, noisy, user-annotated dictionary, Wiktionary. Comparing baselines to WordNet, we find compelling evidence that our network induction process constructs a network with useful semantic structure. With thousands of semantically-linked examples that demonstrate sense usage from basic lemmas to multiword expressions (MWEs), we believe this work motivates future research.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="heidenreich-williams-2019-latent">
<titleInfo>
<title>Latent semantic network induction in the context of linked example senses</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hunter</namePart>
<namePart type="family">Heidenreich</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jake</namePart>
<namePart type="family">Williams</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tim</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Afshin</namePart>
<namePart type="family">Rahimi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The Princeton WordNet is a powerful tool for studying language and developing natural language processing algorithms. With significant work developing it further, one line considers its extension through aligning its expert-annotated structure with other lexical resources. In contrast, this work explores a completely data-driven approach to network construction, forming a wordnet using the entirety of the open-source, noisy, user-annotated dictionary, Wiktionary. Comparing baselines to WordNet, we find compelling evidence that our network induction process constructs a network with useful semantic structure. With thousands of semantically-linked examples that demonstrate sense usage from basic lemmas to multiword expressions (MWEs), we believe this work motivates future research.</abstract>
<identifier type="citekey">heidenreich-williams-2019-latent</identifier>
<identifier type="doi">10.18653/v1/D19-5523</identifier>
<location>
<url>https://aclanthology.org/D19-5523</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>170</start>
<end>180</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Latent semantic network induction in the context of linked example senses
%A Heidenreich, Hunter
%A Williams, Jake
%Y Xu, Wei
%Y Ritter, Alan
%Y Baldwin, Tim
%Y Rahimi, Afshin
%S Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F heidenreich-williams-2019-latent
%X The Princeton WordNet is a powerful tool for studying language and developing natural language processing algorithms. With significant work developing it further, one line considers its extension through aligning its expert-annotated structure with other lexical resources. In contrast, this work explores a completely data-driven approach to network construction, forming a wordnet using the entirety of the open-source, noisy, user-annotated dictionary, Wiktionary. Comparing baselines to WordNet, we find compelling evidence that our network induction process constructs a network with useful semantic structure. With thousands of semantically-linked examples that demonstrate sense usage from basic lemmas to multiword expressions (MWEs), we believe this work motivates future research.
%R 10.18653/v1/D19-5523
%U https://aclanthology.org/D19-5523
%U https://doi.org/10.18653/v1/D19-5523
%P 170-180
Markdown (Informal)
[Latent semantic network induction in the context of linked example senses](https://aclanthology.org/D19-5523) (Heidenreich & Williams, WNUT 2019)
ACL