@inproceedings{fornaciari-hovy-2019-identifying,
title = "Identifying Linguistic Areas for Geolocation",
author = "Fornaciari, Tommaso and
Hovy, Dirk",
editor = "Xu, Wei and
Ritter, Alan and
Baldwin, Tim and
Rahimi, Afshin",
booktitle = "Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5530/",
doi = "10.18653/v1/D19-5530",
pages = "231--236",
abstract = "Geolocating social media posts relies on the assumption that language carries sufficient geographic information. However, locations are usually given as continuous latitude/longitude tuples, so we first need to define discrete geographic regions that can serve as labels. Most studies use some form of clustering to discretize the continuous coordinates (Han et al., 2016). However, the resulting regions do not always correspond to existing linguistic areas. Consequently, accuracy at 100 miles tends to be good, but degrades for finer-grained distinctions, when different linguistic regions get lumped together. We describe a new algorithm, Point-to-City (P2C), an iterative k-d tree-based method for clustering geographic coordinates and associating them with towns. We create three sets of labels at different levels of granularity, and compare performance of a state-of-the-art geolocation model trained and tested with P2C labels to one with regular k-d tree labels. Even though P2C results in substantially more labels than the baseline, model accuracy increases significantly over using traditional labels at the fine-grained level, while staying comparable at 100 miles. The results suggest that identifying meaningful linguistic areas is crucial for improving geolocation at a fine-grained level."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="fornaciari-hovy-2019-identifying">
<titleInfo>
<title>Identifying Linguistic Areas for Geolocation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tommaso</namePart>
<namePart type="family">Fornaciari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dirk</namePart>
<namePart type="family">Hovy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tim</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Afshin</namePart>
<namePart type="family">Rahimi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Geolocating social media posts relies on the assumption that language carries sufficient geographic information. However, locations are usually given as continuous latitude/longitude tuples, so we first need to define discrete geographic regions that can serve as labels. Most studies use some form of clustering to discretize the continuous coordinates (Han et al., 2016). However, the resulting regions do not always correspond to existing linguistic areas. Consequently, accuracy at 100 miles tends to be good, but degrades for finer-grained distinctions, when different linguistic regions get lumped together. We describe a new algorithm, Point-to-City (P2C), an iterative k-d tree-based method for clustering geographic coordinates and associating them with towns. We create three sets of labels at different levels of granularity, and compare performance of a state-of-the-art geolocation model trained and tested with P2C labels to one with regular k-d tree labels. Even though P2C results in substantially more labels than the baseline, model accuracy increases significantly over using traditional labels at the fine-grained level, while staying comparable at 100 miles. The results suggest that identifying meaningful linguistic areas is crucial for improving geolocation at a fine-grained level.</abstract>
<identifier type="citekey">fornaciari-hovy-2019-identifying</identifier>
<identifier type="doi">10.18653/v1/D19-5530</identifier>
<location>
<url>https://aclanthology.org/D19-5530/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>231</start>
<end>236</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Identifying Linguistic Areas for Geolocation
%A Fornaciari, Tommaso
%A Hovy, Dirk
%Y Xu, Wei
%Y Ritter, Alan
%Y Baldwin, Tim
%Y Rahimi, Afshin
%S Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F fornaciari-hovy-2019-identifying
%X Geolocating social media posts relies on the assumption that language carries sufficient geographic information. However, locations are usually given as continuous latitude/longitude tuples, so we first need to define discrete geographic regions that can serve as labels. Most studies use some form of clustering to discretize the continuous coordinates (Han et al., 2016). However, the resulting regions do not always correspond to existing linguistic areas. Consequently, accuracy at 100 miles tends to be good, but degrades for finer-grained distinctions, when different linguistic regions get lumped together. We describe a new algorithm, Point-to-City (P2C), an iterative k-d tree-based method for clustering geographic coordinates and associating them with towns. We create three sets of labels at different levels of granularity, and compare performance of a state-of-the-art geolocation model trained and tested with P2C labels to one with regular k-d tree labels. Even though P2C results in substantially more labels than the baseline, model accuracy increases significantly over using traditional labels at the fine-grained level, while staying comparable at 100 miles. The results suggest that identifying meaningful linguistic areas is crucial for improving geolocation at a fine-grained level.
%R 10.18653/v1/D19-5530
%U https://aclanthology.org/D19-5530/
%U https://doi.org/10.18653/v1/D19-5530
%P 231-236
Markdown (Informal)
[Identifying Linguistic Areas for Geolocation](https://aclanthology.org/D19-5530/) (Fornaciari & Hovy, WNUT 2019)
ACL
- Tommaso Fornaciari and Dirk Hovy. 2019. Identifying Linguistic Areas for Geolocation. In Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019), pages 231–236, Hong Kong, China. Association for Computational Linguistics.