








points. We are also interested in the exact accu-
racy. This metric is often not shown in literature,
but is important for the geolocation in real case
scenarios. We evaluate significance via bootstrap
sampling, following Søgaard et al. (2014).

(a) W-NUT labels

(b) P2C labels

Figure 1: Example of cumulative point accuracy with
the two label sets for gold label Washington DC (flag).
Circles are predictions, diameter represents percentage
of predictions on that point.

4 Results
The model performance is shown in table 2. When
applied to the W-NUT labels, our model repli-
cates the results of Rahimi et al. (2017): in
TWITTER-US the values correspond perfectly, in
TWITTER-WORLD the Att-CNN performance is
slightly lower. Compared to the W-NUT labels,
the P2C labels are much more granular in every
condition and, in spite of their apparent greater
difficulty, they help to reach better performance in
all metrics, with very high levels of significance.
Such differences are surprisingly wide with re-
spect to the accuracy: in TWITTER-US, for P2C
with d = :5, the performance is more than doubled
compared to the same model with the W-NUT k-d

tree labels (54% vs. 26%).
Figure 1 shows the coordinates of the W-NUT

(1a) and of the P2C cluster centroids (1b). The di-
ameter of the circles represent the rate correct pre-
diction for those points. As can be seen, P2C iden-
tifies a unique linguistic region around Washing-
ton, while different W-NUT labels cover more or
less the same area. P2C labels also allow a much
better concentration of predictions in the same ad-
ministrative/linguistic area.

5 Conclusion
P2C is a method for geographic labeling that dy-
namically clusters points and links them to spe-
cific towns. The aims are 1) to gather the points
belonging to the same linguistic areas; 2) to asso-
ciate such areas with distinct, existing administra-
tive regions; 3) to improve the models’ effective-
ness, training them with texts showing consistent
linguistic patterns. Compared to the W-NUT k-d
tree labels, P2C leads to remarkably higher per-
formance in all metrics, and in particular in the
accuracy, even in spite of the higher number of la-
bels identified. This suggests that techniques like
P2C might be particularly useful when high per-
formance at high levels of granularity is required.
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