Grammatical Error Correction in Low-Resource Scenarios

Jakub Náplava, Milan Straka


Abstract
Grammatical error correction in English is a long studied problem with many existing systems and datasets. However, there has been only a limited research on error correction of other languages. In this paper, we present a new dataset AKCES-GEC on grammatical error correction for Czech. We then make experiments on Czech, German and Russian and show that when utilizing synthetic parallel corpus, Transformer neural machine translation model can reach new state-of-the-art results on these datasets. AKCES-GEC is published under CC BY-NC-SA 4.0 license at http://hdl.handle.net/11234/1-3057, and the source code of the GEC model is available at https://github.com/ufal/low-resource-gec-wnut2019.
Anthology ID:
D19-5545
Volume:
Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)
Month:
November
Year:
2019
Address:
Hong Kong, China
Editors:
Wei Xu, Alan Ritter, Tim Baldwin, Afshin Rahimi
Venue:
WNUT
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
346–356
Language:
URL:
https://aclanthology.org/D19-5545/
DOI:
10.18653/v1/D19-5545
Bibkey:
Cite (ACL):
Jakub Náplava and Milan Straka. 2019. Grammatical Error Correction in Low-Resource Scenarios. In Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019), pages 346–356, Hong Kong, China. Association for Computational Linguistics.
Cite (Informal):
Grammatical Error Correction in Low-Resource Scenarios (Náplava & Straka, WNUT 2019)
Copy Citation:
PDF:
https://aclanthology.org/D19-5545.pdf
Code
 ufal/low-resource-gec-wnut2019
Data
AKCES-GECFCE