@inproceedings{marrese-taylor-etal-2019-edit,
title = "An Edit-centric Approach for {W}ikipedia Article Quality Assessment",
author = "Marrese-Taylor, Edison and
Loyola, Pablo and
Matsuo, Yutaka",
editor = "Xu, Wei and
Ritter, Alan and
Baldwin, Tim and
Rahimi, Afshin",
booktitle = "Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5550",
doi = "10.18653/v1/D19-5550",
pages = "381--386",
abstract = "We propose an edit-centric approach to assess Wikipedia article quality as a complementary alternative to current full document-based techniques. Our model consists of a main classifier equipped with an auxiliary generative module which, for a given edit, jointly provides an estimation of its quality and generates a description in natural language. We performed an empirical study to assess the feasibility of the proposed model and its cost-effectiveness in terms of data and quality requirements.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="marrese-taylor-etal-2019-edit">
<titleInfo>
<title>An Edit-centric Approach for Wikipedia Article Quality Assessment</title>
</titleInfo>
<name type="personal">
<namePart type="given">Edison</namePart>
<namePart type="family">Marrese-Taylor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pablo</namePart>
<namePart type="family">Loyola</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yutaka</namePart>
<namePart type="family">Matsuo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tim</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Afshin</namePart>
<namePart type="family">Rahimi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose an edit-centric approach to assess Wikipedia article quality as a complementary alternative to current full document-based techniques. Our model consists of a main classifier equipped with an auxiliary generative module which, for a given edit, jointly provides an estimation of its quality and generates a description in natural language. We performed an empirical study to assess the feasibility of the proposed model and its cost-effectiveness in terms of data and quality requirements.</abstract>
<identifier type="citekey">marrese-taylor-etal-2019-edit</identifier>
<identifier type="doi">10.18653/v1/D19-5550</identifier>
<location>
<url>https://aclanthology.org/D19-5550</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>381</start>
<end>386</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T An Edit-centric Approach for Wikipedia Article Quality Assessment
%A Marrese-Taylor, Edison
%A Loyola, Pablo
%A Matsuo, Yutaka
%Y Xu, Wei
%Y Ritter, Alan
%Y Baldwin, Tim
%Y Rahimi, Afshin
%S Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F marrese-taylor-etal-2019-edit
%X We propose an edit-centric approach to assess Wikipedia article quality as a complementary alternative to current full document-based techniques. Our model consists of a main classifier equipped with an auxiliary generative module which, for a given edit, jointly provides an estimation of its quality and generates a description in natural language. We performed an empirical study to assess the feasibility of the proposed model and its cost-effectiveness in terms of data and quality requirements.
%R 10.18653/v1/D19-5550
%U https://aclanthology.org/D19-5550
%U https://doi.org/10.18653/v1/D19-5550
%P 381-386
Markdown (Informal)
[An Edit-centric Approach for Wikipedia Article Quality Assessment](https://aclanthology.org/D19-5550) (Marrese-Taylor et al., WNUT 2019)
ACL