@inproceedings{ashihara-etal-2019-contextualized,
title = "Contextualized context2vec",
author = "Ashihara, Kazuki and
Kajiwara, Tomoyuki and
Arase, Yuki and
Uchida, Satoru",
editor = "Xu, Wei and
Ritter, Alan and
Baldwin, Tim and
Rahimi, Afshin",
booktitle = "Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5552/",
doi = "10.18653/v1/D19-5552",
pages = "397--406",
abstract = "Lexical substitution ranks substitution candidates from the viewpoint of paraphrasability for a target word in a given sentence. There are two major approaches for lexical substitution: (1) generating contextualized word embeddings by assigning multiple embeddings to one word and (2) generating context embeddings using the sentence. Herein we propose a method that combines these two approaches to contextualize word embeddings for lexical substitution. Experiments demonstrate that our method outperforms the current state-of-the-art method. We also create CEFR-LP, a new evaluation dataset for the lexical substitution task. It has a wider coverage of substitution candidates than previous datasets and assigns English proficiency levels to all target words and substitution candidates."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ashihara-etal-2019-contextualized">
<titleInfo>
<title>Contextualized context2vec</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kazuki</namePart>
<namePart type="family">Ashihara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tomoyuki</namePart>
<namePart type="family">Kajiwara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuki</namePart>
<namePart type="family">Arase</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Satoru</namePart>
<namePart type="family">Uchida</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tim</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Afshin</namePart>
<namePart type="family">Rahimi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Lexical substitution ranks substitution candidates from the viewpoint of paraphrasability for a target word in a given sentence. There are two major approaches for lexical substitution: (1) generating contextualized word embeddings by assigning multiple embeddings to one word and (2) generating context embeddings using the sentence. Herein we propose a method that combines these two approaches to contextualize word embeddings for lexical substitution. Experiments demonstrate that our method outperforms the current state-of-the-art method. We also create CEFR-LP, a new evaluation dataset for the lexical substitution task. It has a wider coverage of substitution candidates than previous datasets and assigns English proficiency levels to all target words and substitution candidates.</abstract>
<identifier type="citekey">ashihara-etal-2019-contextualized</identifier>
<identifier type="doi">10.18653/v1/D19-5552</identifier>
<location>
<url>https://aclanthology.org/D19-5552/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>397</start>
<end>406</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Contextualized context2vec
%A Ashihara, Kazuki
%A Kajiwara, Tomoyuki
%A Arase, Yuki
%A Uchida, Satoru
%Y Xu, Wei
%Y Ritter, Alan
%Y Baldwin, Tim
%Y Rahimi, Afshin
%S Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F ashihara-etal-2019-contextualized
%X Lexical substitution ranks substitution candidates from the viewpoint of paraphrasability for a target word in a given sentence. There are two major approaches for lexical substitution: (1) generating contextualized word embeddings by assigning multiple embeddings to one word and (2) generating context embeddings using the sentence. Herein we propose a method that combines these two approaches to contextualize word embeddings for lexical substitution. Experiments demonstrate that our method outperforms the current state-of-the-art method. We also create CEFR-LP, a new evaluation dataset for the lexical substitution task. It has a wider coverage of substitution candidates than previous datasets and assigns English proficiency levels to all target words and substitution candidates.
%R 10.18653/v1/D19-5552
%U https://aclanthology.org/D19-5552/
%U https://doi.org/10.18653/v1/D19-5552
%P 397-406
Markdown (Informal)
[Contextualized context2vec](https://aclanthology.org/D19-5552/) (Ashihara et al., WNUT 2019)
ACL
- Kazuki Ashihara, Tomoyuki Kajiwara, Yuki Arase, and Satoru Uchida. 2019. Contextualized context2vec. In Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019), pages 397–406, Hong Kong, China. Association for Computational Linguistics.