@inproceedings{ashihara-etal-2019-contextualized,
    title = "Contextualized context2vec",
    author = "Ashihara, Kazuki  and
      Kajiwara, Tomoyuki  and
      Arase, Yuki  and
      Uchida, Satoru",
    editor = "Xu, Wei  and
      Ritter, Alan  and
      Baldwin, Tim  and
      Rahimi, Afshin",
    booktitle = "Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)",
    month = nov,
    year = "2019",
    address = "Hong Kong, China",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/D19-5552/",
    doi = "10.18653/v1/D19-5552",
    pages = "397--406",
    abstract = "Lexical substitution ranks substitution candidates from the viewpoint of paraphrasability for a target word in a given sentence. There are two major approaches for lexical substitution: (1) generating contextualized word embeddings by assigning multiple embeddings to one word and (2) generating context embeddings using the sentence. Herein we propose a method that combines these two approaches to contextualize word embeddings for lexical substitution. Experiments demonstrate that our method outperforms the current state-of-the-art method. We also create CEFR-LP, a new evaluation dataset for the lexical substitution task. It has a wider coverage of substitution candidates than previous datasets and assigns English proficiency levels to all target words and substitution candidates."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ashihara-etal-2019-contextualized">
    <titleInfo>
        <title>Contextualized context2vec</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Kazuki</namePart>
        <namePart type="family">Ashihara</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Tomoyuki</namePart>
        <namePart type="family">Kajiwara</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Yuki</namePart>
        <namePart type="family">Arase</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Satoru</namePart>
        <namePart type="family">Uchida</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-11</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Wei</namePart>
            <namePart type="family">Xu</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Alan</namePart>
            <namePart type="family">Ritter</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Tim</namePart>
            <namePart type="family">Baldwin</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Afshin</namePart>
            <namePart type="family">Rahimi</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Hong Kong, China</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>Lexical substitution ranks substitution candidates from the viewpoint of paraphrasability for a target word in a given sentence. There are two major approaches for lexical substitution: (1) generating contextualized word embeddings by assigning multiple embeddings to one word and (2) generating context embeddings using the sentence. Herein we propose a method that combines these two approaches to contextualize word embeddings for lexical substitution. Experiments demonstrate that our method outperforms the current state-of-the-art method. We also create CEFR-LP, a new evaluation dataset for the lexical substitution task. It has a wider coverage of substitution candidates than previous datasets and assigns English proficiency levels to all target words and substitution candidates.</abstract>
    <identifier type="citekey">ashihara-etal-2019-contextualized</identifier>
    <identifier type="doi">10.18653/v1/D19-5552</identifier>
    <location>
        <url>https://aclanthology.org/D19-5552/</url>
    </location>
    <part>
        <date>2019-11</date>
        <extent unit="page">
            <start>397</start>
            <end>406</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Contextualized context2vec
%A Ashihara, Kazuki
%A Kajiwara, Tomoyuki
%A Arase, Yuki
%A Uchida, Satoru
%Y Xu, Wei
%Y Ritter, Alan
%Y Baldwin, Tim
%Y Rahimi, Afshin
%S Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F ashihara-etal-2019-contextualized
%X Lexical substitution ranks substitution candidates from the viewpoint of paraphrasability for a target word in a given sentence. There are two major approaches for lexical substitution: (1) generating contextualized word embeddings by assigning multiple embeddings to one word and (2) generating context embeddings using the sentence. Herein we propose a method that combines these two approaches to contextualize word embeddings for lexical substitution. Experiments demonstrate that our method outperforms the current state-of-the-art method. We also create CEFR-LP, a new evaluation dataset for the lexical substitution task. It has a wider coverage of substitution candidates than previous datasets and assigns English proficiency levels to all target words and substitution candidates.
%R 10.18653/v1/D19-5552
%U https://aclanthology.org/D19-5552/
%U https://doi.org/10.18653/v1/D19-5552
%P 397-406
Markdown (Informal)
[Contextualized context2vec](https://aclanthology.org/D19-5552/) (Ashihara et al., WNUT 2019)
ACL
- Kazuki Ashihara, Tomoyuki Kajiwara, Yuki Arase, and Satoru Uchida. 2019. Contextualized context2vec. In Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019), pages 397–406, Hong Kong, China. Association for Computational Linguistics.