@inproceedings{dou-etal-2019-domain,
    title = "Domain Differential Adaptation for Neural Machine Translation",
    author = "Dou, Zi-Yi  and
      Wang, Xinyi  and
      Hu, Junjie  and
      Neubig, Graham",
    editor = "Birch, Alexandra  and
      Finch, Andrew  and
      Hayashi, Hiroaki  and
      Konstas, Ioannis  and
      Luong, Thang  and
      Neubig, Graham  and
      Oda, Yusuke  and
      Sudoh, Katsuhito",
    booktitle = "Proceedings of the 3rd Workshop on Neural Generation and Translation",
    month = nov,
    year = "2019",
    address = "Hong Kong",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/D19-5606/",
    doi = "10.18653/v1/D19-5606",
    pages = "59--69",
    abstract = "Neural networks are known to be data hungry and domain sensitive, but it is nearly impossible to obtain large quantities of labeled data for every domain we are interested in. This necessitates the use of domain adaptation strategies. One common strategy encourages generalization by aligning the global distribution statistics between source and target domains, but one drawback is that the statistics of different domains or tasks are inherently divergent, and smoothing over these differences can lead to sub-optimal performance. In this paper, we propose the framework of \textit{Domain Differential Adaptation (DDA)}, where instead of smoothing over these differences we embrace them, directly modeling the difference between domains using models in a related task. We then use these learned domain differentials to adapt models for the target task accordingly. Experimental results on domain adaptation for neural machine translation demonstrate the effectiveness of this strategy, achieving consistent improvements over other alternative adaptation strategies in multiple experimental settings."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dou-etal-2019-domain">
    <titleInfo>
        <title>Domain Differential Adaptation for Neural Machine Translation</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Zi-Yi</namePart>
        <namePart type="family">Dou</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Xinyi</namePart>
        <namePart type="family">Wang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Junjie</namePart>
        <namePart type="family">Hu</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Graham</namePart>
        <namePart type="family">Neubig</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-11</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 3rd Workshop on Neural Generation and Translation</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Alexandra</namePart>
            <namePart type="family">Birch</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Andrew</namePart>
            <namePart type="family">Finch</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Hiroaki</namePart>
            <namePart type="family">Hayashi</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Ioannis</namePart>
            <namePart type="family">Konstas</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Thang</namePart>
            <namePart type="family">Luong</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Graham</namePart>
            <namePart type="family">Neubig</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Yusuke</namePart>
            <namePart type="family">Oda</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Katsuhito</namePart>
            <namePart type="family">Sudoh</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Hong Kong</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>Neural networks are known to be data hungry and domain sensitive, but it is nearly impossible to obtain large quantities of labeled data for every domain we are interested in. This necessitates the use of domain adaptation strategies. One common strategy encourages generalization by aligning the global distribution statistics between source and target domains, but one drawback is that the statistics of different domains or tasks are inherently divergent, and smoothing over these differences can lead to sub-optimal performance. In this paper, we propose the framework of Domain Differential Adaptation (DDA), where instead of smoothing over these differences we embrace them, directly modeling the difference between domains using models in a related task. We then use these learned domain differentials to adapt models for the target task accordingly. Experimental results on domain adaptation for neural machine translation demonstrate the effectiveness of this strategy, achieving consistent improvements over other alternative adaptation strategies in multiple experimental settings.</abstract>
    <identifier type="citekey">dou-etal-2019-domain</identifier>
    <identifier type="doi">10.18653/v1/D19-5606</identifier>
    <location>
        <url>https://aclanthology.org/D19-5606/</url>
    </location>
    <part>
        <date>2019-11</date>
        <extent unit="page">
            <start>59</start>
            <end>69</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Domain Differential Adaptation for Neural Machine Translation
%A Dou, Zi-Yi
%A Wang, Xinyi
%A Hu, Junjie
%A Neubig, Graham
%Y Birch, Alexandra
%Y Finch, Andrew
%Y Hayashi, Hiroaki
%Y Konstas, Ioannis
%Y Luong, Thang
%Y Neubig, Graham
%Y Oda, Yusuke
%Y Sudoh, Katsuhito
%S Proceedings of the 3rd Workshop on Neural Generation and Translation
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong
%F dou-etal-2019-domain
%X Neural networks are known to be data hungry and domain sensitive, but it is nearly impossible to obtain large quantities of labeled data for every domain we are interested in. This necessitates the use of domain adaptation strategies. One common strategy encourages generalization by aligning the global distribution statistics between source and target domains, but one drawback is that the statistics of different domains or tasks are inherently divergent, and smoothing over these differences can lead to sub-optimal performance. In this paper, we propose the framework of Domain Differential Adaptation (DDA), where instead of smoothing over these differences we embrace them, directly modeling the difference between domains using models in a related task. We then use these learned domain differentials to adapt models for the target task accordingly. Experimental results on domain adaptation for neural machine translation demonstrate the effectiveness of this strategy, achieving consistent improvements over other alternative adaptation strategies in multiple experimental settings.
%R 10.18653/v1/D19-5606
%U https://aclanthology.org/D19-5606/
%U https://doi.org/10.18653/v1/D19-5606
%P 59-69
Markdown (Informal)
[Domain Differential Adaptation for Neural Machine Translation](https://aclanthology.org/D19-5606/) (Dou et al., NGT 2019)
ACL