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Abstract

One of the biomedical entity types of rele-
vance for medicine or biosciences are chem-
ical compounds and drugs. The correct de-
tection these entities is critical for other text
mining applications building on them, such as
adverse drug-reaction detection, medication-
related fake news or drug-target extraction.
Although a significant effort was made to de-
tect mentions of drugs/chemicals in English
texts, so far only very limited attempts were
made to recognize them in medical documents
in other languages. Taking into account the
growing amount of medical publications and
clinical records written in Spanish, we have
organized the first shared task on detecting
drug and chemical entities in Spanish medical
documents. Additionally, we included a clin-
ical concept-indexing sub-track asking teams
to return SNOMED-CT identifiers related to
drugs/chemicals for a collection of documents.
For this task, named PharmaCoNER, we gen-
erated annotation guidelines together with a
corpus of 1,000 manually annotated clinical
case studies. A total of 22 teams participated
in the sub-track 1, (77 system runs), and 7
teams in the sub-track 2 (19 system runs). Top
scoring teams used sophisticated deep learn-
ing approaches yielding very competitive re-

sults with F-measures above 0.91. These re-
sults indicate that there is a real interest in pro-
moting biomedical text mining efforts beyond
English. We foresee that the PharmaCoNER
annotation guidelines, corpus and participant
systems will foster the development of new re-
sources for clinical and biomedical text mining
systems of Spanish medical data.

1 Introduction

Efficient access to mentions of drugs, medications
and chemical entities contained in clinical texts,
scientific articles, patents or even the web is a
pressing need shared by biomedical researchers
and clinicians (Krallinger et al., 2017). Biomed-
ical text mining is one of the most prolific applica-
tion domains of natural language processing tech-
nologies (Zweigenbaum et al., 2007). The recog-
nition of pharmaceutical drugs/chemical entities
is a critical step required for the subsequent de-
tection of relations with other biomedically rel-
evant entities such as genes/proteins, diseases or
adverse reactions (Vazquez et al., 2011). Text
mining and information extraction systems were
published that tried to find protein-drug relations
(including ligand-protein interactions and pharma-
cogenomics information), medication-related al-
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lergies, chemical metabolic reactions, drug-drug
interactions (Herrero-Zazo et al., 2013), disease-
drug relations, as well as drug safety-related is-
sues. The correct identification of drug mentions
is also needed for other complex relation types
like drug dosage recognition, duration of medical
treatments or drug repurposing.

The importance of chemical and drug name
recognition motivated several-shared tasks in the
past, such as the CHEMDNER tracks (Krallinger
et al., 2015) or the i2b2 medication challenge
(Uzuner et al., 2010b,a), with a considerable num-
ber of participants and impact (Doan et al., 2010;
Yang, 2010).

Currently, most of the biomedical and clini-
cal NLP research, is done on English documents,
while only few tasks were carried out using non-
English texts, or were multilingual. Nonetheless,
it is important to highlight that there is a consider-
able amount of biomedically relevant content pub-
lished in other languages than English, and par-
ticularly clinical texts are entirely written in the
native language of each country.

Spanish is a language spoken by more than 572
million people in the world today, either as a na-
tive, second or foreign language. It is the second
language in the world by number of native speak-
ers with more than 477 million people. Accord-
ing to results derived from WHO statistics, just
in Spain there are over 180 thousand practicing
physicians, more than 247 thousand nursing and
midwifery personnel or 55 thousand pharmaceu-
tical personnel. These facts, and the extrapola-
tion to other Spanish speaking countries explains
why a considerable subset of the PubMed database
records corresponds to Spanish medical articles.
Moreover, PubMed does only contain a part of the
medical literature originally published in Spanish,
which is also stored in other resources such as
MEDES, SciELO, IBECS or CUIDEN.

Following the outline of previous chemi-
cal/drug NER efforts, in particular the BioCreative
CHEMDNER tracks, we have carried out the first
task on chemical and drug mention recognition
from Spanish medical texts, namely from a cor-
pus of Spanish clinical case studies. Thus, this
track addressed the automatic extraction of chemi-
cal, drug, gene/protein mentions from clinical case
studies written in Spanish. The main aim was to
promote the development of named entity recog-
nition tools of practical relevance, that is, chemi-

cal and drug mentions in non-English content, de-
termining the current-state-of-the art, identifying
challenges and comparing the strategies and re-
sults to those published for English data.

2 Methods

2.1 Track Description
The PharmaCoNER track was one of the six tracks
of the BioNLP-OST 2019 / EMNLP-IJCNLP
workshop1. It was the first community challenge
track devoted to the recognition of pharmaceuti-
cal drugs and chemical entities in medical texts in
Spanish.

For this track, two scenarios or sub-tracks were
proposed:

• NER offset and entity classification. The
first sub-track focused on the recognition and
classification of entities.

• Concept indexing. The second sub-track con-
sisted of concept indexing, where, for each
document, the participating teams had to gen-
erate the list of the unique SNOMED-CT
concept identifiers, which were compared to
the manually annotated concept IDs corre-
sponding to the pharmaceutical drugs and
chemical entities.

2.2 Track data
We prepared a manually classified collection of
clinical case report sections derived from open
access Spanish medical publications, named the
Spanish Clinical Case Corpus (SPACCC)2. The
corpus contained a total of 1,000 clinical cases /
396,988 words. It is noteworthy that this kind of
narrative shows properties of both the biomedical
and medical literature, as well as clinical records.
Case reports are considered as the scientific pa-
per of a single clinical observation. Moreover, the
clinical cases were not restricted to a single med-
ical discipline, covering a variety of medical dis-
ciplines, including oncology, urology, cardiology,
pneumology or infectious diseases. This is key to
cover a diverse set of chemicals and drugs.

The PharmaCoNER corpus had a total of 7,624
entity mentions, corresponding to four different
mention types3. Figure 1 shows a screenshot of a

1https://2019.bionlp-ost.org/
2https://github.com/PlanTL-SANIDAD/SPACCC
3For a detailed description of the mentions types, see (Ra-

bal et al., 2018).
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Figure 1: PharmaCoNER annotation example.

clinical case annotated using the BRAT tool. The
overall annotation statistics were:

• NORMALIZABLES (normalizable): 4,398
mentions of chemicals that could be manu-
ally normalized to a unique concept identifier
(primarily SNOMED-CT).

• NO NORMALIZABLES (not normaliz-
able): 50 mentions of chemicals that could
not be normalized manually to a unique
concept identifier.

• PROTEINAS (proteins): 3,009 mentions of
proteins and genes following an adaptation
of the BioCreative GPRO track annotation
guidelines. This class included also peptides,
peptide hormones and antibodies.

• UNCLEAR: 167 cases of general substance
class mentions of clinical or biomedical rel-
evance, including certain pharmaceutical for-
mulations, general treatments, chemotherapy
programs, vaccines and a predefined set of
general substances (e.g.: Estragn, Silima-
rina, Bromelana, Melanina, Vaselina, Lano-
lina, Alcohol, Tabaco, Marihuana, Cannabis,
Opio and Gluten)4.

The annotation process of the PharmaCoNER
corpus was inspired by previous annotation

4Mentions of this class were not part of the entities eval-
uated by this track, but served as additional annotations of
medical relevance.

schemes and corpora used for the BioCreative
CHEMDNER (Krallinger et al., 2015) and GPRO
tracks (Pérez-Pérez et al., 2017), translating the
guidelines used for these tracks into Spanish and
adapting them to the characteristics and needs of
clinically oriented documents by modifying the
annotation criteria and rules to cover medical in-
formation needs. This adaptation was carried
out in collaboration with practicing physicians
and medicinal chemistry experts. The adaptation,
translation and refinement of the guidelines (Ra-
bal et al., 2018) was done on a sample set of the
SPACCC corpus and linked to an iterative process
of annotation consistency analysis through inter-
annotator agreement (IAA) studies until a high an-
notation quality in terms of IAA was reached. The
final, IAA measure obtained for this corpus was
calculated on a set of 50 records that were dou-
ble annotated (blinded) by two different expert an-
notators, reaching a pairwise agreement of 93%
on the exact entity mention comparison level and
76% agreement when also the entity concept nor-
malization was taken into account. Entity nor-
malization was carried out primarily against the
SNOMED-CT knowledge base. Note that there
is a SNOMED-CT version directly released by the
Spanish Ministry of Health twice a year.

The PharmaCoNER corpus was randomly sam-
pled into three subsets: the train set (500 clini-
cal cases), and the development and test sets (250
clinical cases each). These clinical cases were
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manually annotated using a customized version of
AnnotateIt. Then, the BRAT annotation toolkit
(Stenetorp et al., 2012) was used to correct errors
and add missing annotations. The statistics of the
number of label for each datasets are shown in Ta-
ble 1.

Table 1: Distribution of labels in the PharmaCoNER
datasets.

Label Train Dev Test Overall
NORMALIZABLES 2,304 1,121 973 4,398

NO NORMALIZABLES 24 16 10 50
PROTEINAS 1,405 745 859 3,009
UNCLEAR 89 44 34 167

Together with the test set, we released an addi-
tional collection of 3,501 documents (background
set5) to make sure that participating teams were
not able to do manual corrections and also to pro-
mote that these systems would potentially be able
to scale to larger data collections.

Moreover, we provided also the following re-
sources: (1) Spanish medical text tokenizer, sen-
tence splitter, lemmatizer and POS tagger; (2)
Dictionary of chemicals, compounds and drugs
in Spanish; (3) Sense inventory of Spanish med-
ical abbreviation and their long forms; (4) Spanish
drug naming file with prefixes and suffixes rules;
and (5) a large background set of medical and
health documents in Spanish.

2.3 Evaluation metrics

We released an evaluation script that supported the
evaluation of the predictions of the participating
teams. For both sub-tracks, the primary evaluation
metrics used consisted of standard measures from
the NLP community, namely micro-averaged pre-
cision, recall, and balanced F-score, the last one
being the official evaluation measure:

Precision: P = TP
TP+FP

Recall: R = TP
TP+FN

F-score: F1 = 2 ∗ (P∗R)
(P+R)

where TP = true positives, FP = false positive
and FN = false negative.

5The background set included the training, development
and test sets, and an additional collection of 2,751 unlabeled
clinical cases (total of 3,751 clinical cases).

Teams could submit up to five prediction files
(or system runs) in a predefined prediction for-
mat: BRAT, for sub-track 1, and TSV files, for
sub-track 2.

3 Participation and Results

3.1 Participation

To participate in the PharmaCoNER track it was
necessary to register both on the official website6

and in the CodaLab competition7. Training and
development sets were made available for down-
load on the official website8, and the evaluation
script was uploaded to GitHub9, to ensure a trans-
parent evaluation.

As we already said, submissions had to be pro-
vided in a predefined prediction format: BRAT, for
sub-track 1, and TSV files, for sub-track 2. Addi-
tionally we plan to release the corpus also in the
popular PubAnnotation format (Kim and Wang,
2012).

The participants had a period of almost two
months to develop their system. In the middle of
this period, the test and background sets were re-
leased with the 3,751 documents that the partici-
pants had to process and label, although the final
evaluation was done only on the 250 documents
corresponding to the test set. The intention was
to use the background set to enable the construc-
tion of participant-generated Silver Standard cor-
pus. As we have mentioned, the participants could
submit a maximum of 5 system runs, and, once
the submission deadline expired, we published the
Gold Standard annotations of the test set, in or-
der to ensure a transparent evaluation process and
help participants to carry out a more detailed error
analysis.

A total of 22 teams participated in the sub-track
1, submitting a total of 77 systems, and 7 teams
in the sub-track 2, submitting a total of 19 runs.
Teams from eleven different nationalities partici-
pated in the track: seven teams from Spain, three
from China, and one team from each: Finland,
France, India, Japan, Romania, Russia, United
Kingdom and the United States. Three partici-
pants belong to a commercial institution. Table

6http://temu.bsc.es/pharmaconer/
7https://competitions.codalab.org/

competitions/23159
8http://temu.bsc.es/pharmaconer/index.

php/data/
9https://github.com/PlanTL-SANIDAD/

PharmaCoNER-CODALAB-Evaluation-Script

http://temu.bsc.es/pharmaconer/
https://competitions.codalab.org/competitions/23159
https://competitions.codalab.org/competitions/23159
http://temu.bsc.es/pharmaconer/index.php/data/
http://temu.bsc.es/pharmaconer/index.php/data/
https://github.com/PlanTL-SANIDAD/PharmaCoNER-CODALAB-Evaluation-Script
https://github.com/PlanTL-SANIDAD/PharmaCoNER-CODALAB-Evaluation-Script
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Table 2: Overview of Team Participation in the PharmaCoNER track.

Username Organization/Institution/Company Members Country Comm.
alily Carlos III University of Madrid 3 Spain No

ayan7246 Unaffiliated 1 India No
chaanim University of Turku 2 Finland No
CongSun Dalian University of Technology 3 China No

Edson University of Côte d’Azur 4 France No
foxlf823 UMASS Lowell 3 United States No

FSL Unaffiliated 2 Spain No
ghada.alfattni University of Manchester 3 United Kingdom No

ixamed University of the Basque Country 5 Spain No
JoyHan - - - -
lluisp Universitat Politècnica de Catalunya 1 Spain No

lukas.lange Bosch Center for Artificial Intelligence 3 Germany Yes
m-stoeckel Goethe University Frankfurt 2 Germany No

m.domrachev Unaffiliated 1 Russia No
naiven JD 1 China Yes

plubeda Universidad de Jan 4 Spain No
raduion Research Institute for AI ”Mihai Draganescu” 3 Romania No
rriveraz Carlos III University of Madrid 3 Spain No
sohrab National Institute of Advanced Industrial Science and Technology 4 Japan No
tEarth - - - -

uyaseen Siemens AG 2 Germany Yes
VSP Carlos III University of Madrid 1 Spain No

xiongying Harbin Institute of Technology 4 China Yes

2 summarizes the most relevant information about
the participants (we lack the information from two
of the teams, because they registered at CodaLab,
but not at our website).

3.2 Baseline system
We produced three baseline systems for the track:
The first one is a very simple baseline based on vo-
cabulary transfer, and the other two baseline sys-
tems are competitive baselines based on the Phar-
maCoNER Tagger (Armengol-Estapé et al., 2019),
a deep learning-based tool for automatically find-
ing chemicals and drugs in Spanish medical texts.

In the vocabulary transfer approach, each an-
notation from the train and development datasets
was transferred to the test dataset using strict string
matching. For those cases where the text was the
same, but the entity type was different, we decided
to annotate all entity types that matched that text.

In the two baselines based on the Pharma-
CoNER Tagger, we used the default parame-
ters, a hidden layer of size 300, and early stop
(best model at epoch 35). The models were
trained using the GloVe embeddings (Penning-
ton et al., 2014) from SBWC10 (from now on
baseline-glove) and the Medical Word Embed-
dings for Spanish (Soares et al., 2019) (from now
on baseline-med). The corpus was tokenized us-
ing spaCy.

10https://github.com/dccuchile/
spanish-word-embeddings

3.3 Results

Table 3 shows the results for sub-track 1 (NER off-
set and entity type classification), ordered by team
performance (first column), then system perfor-
mance (second column).

The top scoring system was submitted by
xiongying, with an F-score of 0.91052, being rel-
atively close to the next two participants: FSL,
ranked 2nd with a F-score of 0.90968, and m-
stoeckel, ranked 3rd with a F-score of 0.89888.
Participant Edson submitted five systems that
scored almost zero. Once he noticed the error, he
submitted two fixed submissions. These submis-
sions were made after the publication of the re-
sults but before the release of the test set with GS
annotations. These late submissions of Edson are
marked with an asterisks in the table, including the
hypothetical ranking of his team/systems.

Note that all of the teams were well above
the baseline based on vocabulary transfer, which
would rank last if we ignored the submission with
errors. The competitive baseline trained with the
GloVe embeddings would rank 16, and the one
trained with embeddings that are specific for clin-
ical texts in Spanish would rank 13. It is remark-
able that 12 teams out of 20 managed to beat a very
competitive baseline based on a well known Deep
Learning tool.

Table 4 shows the results for sub-track 2 (Con-
cept Indexing), ordered by team performance (first

https://github.com/dccuchile/spanish-word-embeddings
https://github.com/dccuchile/spanish-word-embeddings
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Table 3: Results for sub-track 1: NER offset and entity type classification.

Team Rank System Rank User Precision Recall F1

1

1

xiongying

0.91226 0.90879 0.91052
2 0.91589 0.90445 0.91013
3 0.91008 0.90662 0.90835
4 0.90751 0.90554 0.90652
5 0.90205 0.90988 0.90595

2 3 FSL 0.90625 0.91314 0.90968

3
7

m-stoeckel
0.90708 0.89082 0.89888

8 0.89297 0.89685 0.89491
13 0.88839 0.86369 0.87586

4

9

CongSun

0.90463 0.88056 0.89243
10 0.90704 0.87405 0.89024
14 0.89183 0.85939 0.87531
17 0.88732 0.85071 0.86863

5 11 naiven 0.90315 0.87079 0.88668

6

12

lukas.lange

0.88950 0.88274 0.88610
27 0.85162 0.87242 0.86189
28 0.86307 0.85885 0.86095
31 0.85078 0.86048 0.85560
32 0.85520 0.85288 0.85404

7 15 chaanim 0.87568 0.87188 0.87378

8
16

foxlf823
0.88098 0.85993 0.87033

22 0.87218 0.85939 0.86574
23 0.87674 0.85342 0.86492

9

18

ixamed

0.90222 0.83659 0.86817
21 0.90088 0.83388 0.86608
42 0.82981 0.85233 0.84092
49 0.81914 0.80402 0.81151
50 0.81914 0.80402 0.81151

10

19

sohrab

0.86881 0.86645 0.86763
26 0.87079 0.85613 0.86340
39 0.85320 0.83931 0.84620
41 0.83665 0.84528 0.84094
46 0.88483 0.77579 0.82673

11

20

uyaseen

0.90581 0.83008 0.86629
24 0.90482 0.82573 0.86347
25 0.90482 0.82573 0.86347
33 0.84644 0.85885 0.85260
37 0.88941 0.81650 0.85140

12
29

m.domrachev
0.87073 0.84473 0.85754

30 0.87073 0.84473 0.85754
- - baseline-med 0.87020 0.83713 0.85335

13
34

rriveraz
0.88538 0.82193 0.85248

35 0.88538 0.82193 0.85248
36 0.88538 0.82193 0.85248

14

38

raduion

0.90189 0.80347 0.84984
40 0.90043 0.79533 0.84462
47 0.89327 0.76330 0.82319
48 0.78281 0.84528 0.81284
52 0.92530 0.71281 0.80527

15

43

lluisp

0.88882 0.78990 0.83645
44 0.89176 0.78719 0.83622
45 0.88991 0.78556 0.83449
53 0.81160 0.76710 0.78872
61 0.73211 0.73887 0.73548

- - baseline-glove 0.83259 0.80999 0.82113

16
51

ghada.alfattni
0.85039 0.77144 0.80900

55 0.82776 0.72530 0.77315

17

54

plubeda

0.88507 0.69815 0.78058
56 0.85992 0.69653 0.76965
60 0.92602 0.61835 0.74154
62 0.84404 0.64929 0.73397

18
57

alily
0.86034 0.68893 0.76515

59 0.86981 0.67101 0.75759
19 58 VSP 0.81621 0.71607 0.76287

20

63

ayan7246

0.74668 0.61129 0.67224
67 0.43812 0.48046 0.45831
68 0.36910 0.47991 0.41728
69 0.33333 0.48046 0.39360
70 0.52283 0.19273 0.28163

21
64

JoyHan
0.88519 0.54098 0.67155

65 0.52523 0.52666 0.52594
66 0.88350 0.37193 0.52349

- - baseline-vt 0.67330 0.60641 0.63810

22

71

Edson

0.00280 0.00163 0.00206
72 0.00008 0.00163 0.00015
73 0.00007 0.00217 0.00014
74 0.00007 0.00217 0.00014
75 0.00002 0.00054 0.00004

20*
60*

Edson
0.80660 0.68920 0.74330

70* 0.63350 0.14930 0.24160
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Table 4: Results for sub-track 2: Concept Indexing.

Team Rank System Rank User Precision Recall F1
1 1 FSL 0.91108 0.92083 0.91593

2

2

ixamed

0.87964 0.82882 0.85347
3 0.87623 0.82810 0.85149
9 0.82374 0.83666 0.83015
10 0.81232 0.80884 0.81058

3

4

xiongying

0.82835 0.85021 0.83914
5 0.83809 0.83809 0.83809
6 0.82202 0.84665 0.83415
7 0.82032 0.84665 0.83327
8 0.81699 0.84379 0.83018

4
11

sohrab
0.87532 0.73609 0.79969

12 0.88003 0.73252 0.79953

5

13

plubeda

0.85207 0.63267 0.72616
14 0.82887 0.61840 0.70833
15 0.87879 0.55849 0.68295
16 0.83350 0.57846 0.68295

6 17 VSP 0.66502 0.55215 0.60335

7
18

rriveraz
0.50000 0.49287 0.49641

19 0.48641 0.49786 0.49207

Table 5: Results by category for sub-track 1.

NORMALIZABLES NO NORMALIZABLES PROTEINAS
Precision Recall F1 Precision Recall F1 Precision Recall F1

Min 0.31976 0.17986 0.28618 0.00000 0.00000 0.00000 0.32377 0.12224 0.19981
Mean 0.87217 0.81754 0.83880 0.19844 0.03276 0.04984 0.81654 0.76428 0.78494

Median 0.90977 0.86434 0.87922 0.00000 0.00000 0.00000 0.85626 0.82421 0.83445
Maximum 0.95924 0.94142 0.94253 1.00000 0.40000 0.38095 0.89831 0.89406 0.88709
Std Dev 0.12742 0.12967 0.13065 0.38104 0.06854 0.09247 0.11328 0.15302 0.13668

Best team raduion FSL xiongying
m-stoeckel

FSL FSL plubeda xiongying xiongyingsohrab
xiongying

column), then system performance (second col-
umn). The top scoring system for sub-track 2
was submitted by FSL, with a F-score of 0.91593,
showing a significantly better result when com-
pared to the second best submission (more than
6 points) provided by ixamed, with a F-score of
0.85347. The third team was xiongying, the best
participant in the sub-track 1, with a F-score of
0.83914.

Some statistics of the results are shown in Table
6. There was a high variability among the sys-
tems, with a difference of 6 point between the best
system and the median for sub-track 1, and of 10
points for sub-track 2. The difference between the
best system and the mean of all system was still
higher. This proved that the task, was quite diffi-
cult.

As additional analysis, results by category, in-
cluding the best teams for category and metric, are
shown in Table 5. The performance of the sys-
tems was systematically better for the NORMAL-
IZABLES category, 4-9 points better in respect
with the PROTEINAS category. Surprisingly, the

Table 6: Statistics by track.

Track Measure Precision Recall F1

1

Minimum 0.33333 0.19273 0.28163
Mean 0.84211 0.77916 0.80493

Median 0.88417 0.82791 0.85248
Maximum 0.92602 0.91314 0.91052
Std Dev 0.12071 0.13840 0.12819

2

Minimum 0.48641 0.49287 0.49207
Mean 0.80152 0.72885 0.75936

Median 0.82887 0.80884 0.81058
Maximum 0.91108 0.92083 0.91593
Std Dev 0.11975 0.14059 0.12057

median for the NO NORMALIZABLES category
was 0, suggesting that at least half of the systems
ignored this category.

3.4 Combination of systems

In this section, we present an experiment we per-
formed to combine the systems submitted to the
track to see if we could improve the results. We
combined the systems using a voting scenario: we
accepted as good the annotations that had been
predicted by N systems.

The first system accepted all the annotations
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predicted by, at least, one of the systems, while the
last one accepted only the annotations that were
predicted by, at least, N systems. The results of
this experiment are shown in Table 7.

As expected, as the value of N increased (the
number of required votes was increased), the re-
call got worse and the precision improved. Based
on the maximum value of F-score for sub-track 1
on the train and development sets we selected 20
as the optimum value for combining systems (F-
score of 0.98408). We used this value for N on
the test set, obtaining an F-score of 0.92355, 1.3
points better than the best system. This score was
lower than the best one that could be obtained for
the test set (0.92426, with N = 18), but the differ-
ence was (in practice) negligible.

The combined systems did not improve the re-
sults for sub-track 2. The maximum value of F-
score on the train and development sets was ob-
tained combining 6-7 systems (F-score of 0.97352
in the Dev set for N = 6). This scored 0.87073 in
the test set, 4.5 points below the best system. This
was probably a consequence of amount of systems
and the performance gap between the best systems
and the others. For the future, we will combine the
system using more sophisticated approaches.

4 Discussion and Conclusions

The results of the first chemical and drug named
entity recognition track from clinical case reports
in Spanish are very encouraging, both in terms of
the number of participants, not only from Spanish-
speaking countries, as well as in terms of the ob-
tained system results, which are already reaching
a level of performance that would make the result-
ing tools very valuable resources for processing
the vast amount of medical data generated world-
wide in Spanish.

We had structured the track into two sub-tracks
to cover different practical aspects of the resulting
systems. The named entity recognition track of
chemicals/drugs had the aim of serving as a build-
ing block task for future down-stream text min-
ing of more complex information types, includ-
ing the detection of medication duration, dosage,
drug-drug-interactions, therapeutic target relations
and drug/chemical induced adverse effects. The
concept-indexing sub-track was more concerned
with the development of sophisticated semantic re-
trieval engines and the exploitation of high impact
normative terminologies such as SNOMED CT.

Table 7: Combining systems using a voting scheme.

Track # Train Dev Test

1

1 0.77448 0.64485 0.36036
2 0.89285 0.78679 0.71539
3 0.94173 0.85545 0.78403
4 0.95583 0.88711 0.82505
5 0.96638 0.91222 0.85261
6 0.97523 0.92725 0.87124
7 0.98024 0.93859 0.88286
8 0.98452 0.94902 0.89519
9 0.98792 0.95772 0.90438
10 0.98989 0.96386 0.90828
11 0.99160 0.96906 0.91038
12 0.99319 0.97280 0.91436
13 0.99386 0.97431 0.91615
14 0.99412 0.97760 0.91880
15 0.99505 0.97808 0.92124
16 0.99518 0.97856 0.92253
17 0.99558 0.98162 0.92320
18 0.99598 0.98368 0.92426
19 0.99571 0.98362 0.92418
20 0.99571 0.98408 0.92355
21 0.99585 0.98244 0.92372
22 0.99598 0.98182 0.92074
23 0.99638 0.97740 0.91872
24 0.99638 0.97569 0.91641
25 0.99651 0.96952 0.91202
26 0.99610 0.96665 0.90815
27 0.99516 0.96294 0.90392
28 0.99421 0.95715 0.90152
29 0.99217 0.95135 0.89164
30 0.99025 0.94474 0.88598
31 0.98669 0.93575 0.88197
32 0.98641 0.92965 0.87602
33 0.98462 0.92197 0.86712
34 0.98198 0.91708 0.85794
35 0.98073 0.91311 0.85002
36 0.97738 0.90290 0.84011
37 0.97285 0.89545 0.82827
38 0.97058 0.88458 0.81402
39 0.96829 0.87545 0.80040
40 0.96397 0.86574 0.78042
41 0.95860 0.85169 0.75992
42 0.95258 0.83427 0.73265
43 0.94455 0.81401 0.69613
44 0.93128 0.79135 0.66063
45 0.91042 0.76815 0.57034
46 0.88054 0.72273 0.50117
47 0.84009 0.66146 0.46420
48 0.75949 0.57517 0.41148
49 0.34449 0.26516 0.20968

2

1 0.65485 0.63039 0.57822
2 0.81233 0.80333 0.70237
3 0.90781 0.91254 0.80749
4 0.92741 0.93277 0.81967
5 0.97599 0.96739 0.84716
6 0.98009 0.97352 0.87073
7 0.98298 0.97020 0.87106
8 0.97983 0.97061 0.87719
9 0.97207 0.94607 0.86444
10 0.96992 0.93864 0.86435
11 0.95120 0.90585 0.85479
12 0.94721 0.88803 0.84603
13 0.88231 0.80623 0.80337
14 0.87566 0.78624 0.79056
15 0.85368 0.73964 0.75661
16 0.81724 0.68416 0.72358
17 0.43734 0.38884 0.37916
18 0.43231 0.39216 0.36889
19 0.40541 0.36462 0.33152
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Surprisingly we had a considerably higher number
of participants for the NER sub-track when com-
pared to the concept-indexing sub-track. Future
evaluation efforts should potentially consider also
an entity grounding/normalization of chemical and
drug mentions in clinical case reports.

Most of the participating systems were based on
the use of sophisticated deep learning and neural
net approaches, which are becoming the state of
the art methods for named entity recognition tasks
also in specialized domains such as biomedicine
or for non-English data.

When analyzing the more difficult mention
types for participating teams, it is still clear that
very short abbreviations (1-2 letters) are cumber-
some to recognize correctly, due to their high level
of implicit ambiguity. Solving such cases would
probably require larger manually annotated cor-
pora or the generation of other complementary re-
sources specifically suited for the recognition and
resolution of short abbreviations. We did not ob-
serve any particular issues related to the clini-
cal disciplines of the case reports, thus it seems
that drug NER systems should work well across
all medical specialties. It is important to place
the very competitive results obtained for Pharma-
CoNER into its context, in terms data collections
used. When compared to the biomedical literature
or medicinal chemistry patents, clinical case re-
ports show a lower degree of variability in terms
of the chemicals and drug mentions used, as in
the clinic only a limited number of medications
and chemical entities are being used for treatment,
biochemical testing or explored in clinical settings
and analysis.

The construction of high quality Gold Stan-
dard manually annotated corpora can be consid-
ered one of the major bottlenecks for the develop-
ment of biomedical named entity recognition sys-
tems. During this task, we have promoted the col-
laborative generation of a larger Silver Standard
corpus generated through the predictions of all the
participating teams. A more detailed examination
of this resource and approaches on how to opti-
mally merge/combine multiple annotations and in
turn train new systems using this silver standard
dataset might give new insights on how to speed up
the creation of new NER tools/annotated datasets.

One of the difficulties we have also encoun-
tered during this task was due to the use of a
very popular third party platform for organizing

online shared tasks on data mining tasks, includ-
ing text mining and NLP. The explored resource,
Codalab, had a server crash, and no proper up to
date backup system in place (including user regis-
tration info, as well as data collections). Thus, the
use of resources with a more focused support for
biomedical text mining datasets, corpora, services
and shared task organization, such as PubAnno-
tation would have been a better choice for hosting
all the relevant data and predictions for biomedical
shared tasks.
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