@inproceedings{hakala-pyysalo-2019-biomedical,
title = "Biomedical Named Entity Recognition with Multilingual {BERT}",
author = "Hakala, Kai and
Pyysalo, Sampo",
editor = "Jin-Dong, Kim and
Claire, N{\'e}dellec and
Robert, Bossy and
Louise, Del{\'e}ger",
booktitle = "Proceedings of the 5th Workshop on BioNLP Open Shared Tasks",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5709",
doi = "10.18653/v1/D19-5709",
pages = "56--61",
abstract = "We present the approach of the Turku NLP group to the PharmaCoNER task on Spanish biomedical named entity recognition. We apply a CRF-based baseline approach and multilingual BERT to the task, achieving an F-score of 88{\%} on the development data and 87{\%} on the test set with BERT. Our approach reflects a straightforward application of a state-of-the-art multilingual model that is not specifically tailored to either the language nor the application domain. The source code is available at: \url{https://github.com/chaanim/pharmaconer}",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hakala-pyysalo-2019-biomedical">
<titleInfo>
<title>Biomedical Named Entity Recognition with Multilingual BERT</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kai</namePart>
<namePart type="family">Hakala</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sampo</namePart>
<namePart type="family">Pyysalo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 5th Workshop on BioNLP Open Shared Tasks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kim</namePart>
<namePart type="family">Jin-Dong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nédellec</namePart>
<namePart type="family">Claire</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bossy</namePart>
<namePart type="family">Robert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Deléger</namePart>
<namePart type="family">Louise</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present the approach of the Turku NLP group to the PharmaCoNER task on Spanish biomedical named entity recognition. We apply a CRF-based baseline approach and multilingual BERT to the task, achieving an F-score of 88% on the development data and 87% on the test set with BERT. Our approach reflects a straightforward application of a state-of-the-art multilingual model that is not specifically tailored to either the language nor the application domain. The source code is available at: https://github.com/chaanim/pharmaconer</abstract>
<identifier type="citekey">hakala-pyysalo-2019-biomedical</identifier>
<identifier type="doi">10.18653/v1/D19-5709</identifier>
<location>
<url>https://aclanthology.org/D19-5709</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>56</start>
<end>61</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Biomedical Named Entity Recognition with Multilingual BERT
%A Hakala, Kai
%A Pyysalo, Sampo
%Y Jin-Dong, Kim
%Y Claire, Nédellec
%Y Robert, Bossy
%Y Louise, Deléger
%S Proceedings of the 5th Workshop on BioNLP Open Shared Tasks
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F hakala-pyysalo-2019-biomedical
%X We present the approach of the Turku NLP group to the PharmaCoNER task on Spanish biomedical named entity recognition. We apply a CRF-based baseline approach and multilingual BERT to the task, achieving an F-score of 88% on the development data and 87% on the test set with BERT. Our approach reflects a straightforward application of a state-of-the-art multilingual model that is not specifically tailored to either the language nor the application domain. The source code is available at: https://github.com/chaanim/pharmaconer
%R 10.18653/v1/D19-5709
%U https://aclanthology.org/D19-5709
%U https://doi.org/10.18653/v1/D19-5709
%P 56-61
Markdown (Informal)
[Biomedical Named Entity Recognition with Multilingual BERT](https://aclanthology.org/D19-5709) (Hakala & Pyysalo, BioNLP 2019)
ACL