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Abstract

The active gene annotation corpus (AGAC)
was developed to support knowledge discov-
ery for drug repurposing. The AGAC track
of the BioNLP Open Shared Tasks 2019 was
organized, to facilitate cross-disciplinary col-
laboration across BioNLP and Pharmacoin-
formatics communities, for drug repurposing.
The AGAC track consists of three subtasks: 1)
named entity recognition, 2) thematic relation
extraction, and 3) loss of function (LOF) / gain
of function (GOF) topic classification. The
AGAC track was participated by five teams, of
which the performance is compared and ana-
lyzed. The results revealed a substantial room
for improvement in the design of the task,
which we analyzed in terms of “imbalanced
data”, “selective annotation” and “latent topic
annotation”.
Keywords: corpus annotation, shared task,
gene mutation, drug repurposing

1 Introduction

Biomedical natural language processing
(BioNLP) has long been recognized as effec-
tive method to accelerate drug-related knowledge
discovery (Vazquez et al., 2011; Gachloo et al.,
2019). Particularly, PubMed is regarded as a main
source for knowledge discovery as it stored a vast
amount of reports on scientific discovery, and the
size keeps constantly growing (Hunter and Cohen,
2006; Cohen et al., 2016). Various corpora used
texts from PubMed. Examples include GENIA
(Kim et al., 2003), CRAFT (Cohen et al., 2017),
and BioCreative task corpora (Li et al., 2016), to
name just a few.

The growing interest in developing corpus an-
notation also has led to the development of pub-
lic annotation platform in the BioNLP commu-
nity. An example of recent progress is PubAnno-
tation (Kim and Wang, 2012; Kim et al., 2019),

which offers a versatile platform for corpus con-
struction, annotation, sharing the data, and offer-
ing them as open shared tasks (https://2019.
bionlp-ost.org/tasks).

In the context of drug-related knowledge dis-
covery, various corpora were developed. Exam-
ples include annotated corpora for adverse drug
reactions (ADR) (Roberts et al., 2017; Demner-
Fushman et al., 2018; Karimi et al., 2015; Ginn
et al., 2014; Gurulingappa et al., 2012), and those
for drug-drug interactions (DDI) (Herrero-Zazo
et al., 2013). However, as far as the authors know,
there has been no work of corpus annotation (ex-
cept AGAC-related ones) for drug repurposing.
Drug repurposing (AKA drug repositioning) is to
find new indications of approved drugs, which is
now recognized as an important mean for investi-
gating novel drug efficiency in the pharmaceutical
industry.

This paper presents the Active Gene Annota-
tion Corpus (AGAC) corpus and a shared task (the
AGAC track of BioNLP Open Shared Tasks 2019)
based on it. The design of AGAC is highly mo-
tivated by the LOF-agonist/GOF-antagonist hy-
pothesis proposed by Wang and Zhang (Wang and
Zhang, 2013), which states:

For a given disease caused by driven
gene with Loss of function (LOF) or
Gain of function (GOF), an targeted an-
tagonist/agonist is a candidate drug.

The hypothesis was well supported by experi-
ments, which encouraged large scale automatic
knowledge curation.

Actually, the hypothesis represented the ideas of
tracking the phenotypic information of gene and
it shared the similar motivation of phenome-wide
association studies (PheWAS) (Rastegar-Mojarad
et al., 2015). In PheWAS, the international clas-
sification of diseases (ICD) codes was assigned as

https://2019.bionlp-ost.org/tasks
https://2019.bionlp-ost.org/tasks
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the form of the phenotype to candidate single nu-
cleotide polymorphisms (SNPs) so as to investi-
gate the relevance of phenotypes and gene muta-
tion.

AGAC is a corpus annotated by human experts,
with an aim at capturing function changes of mu-
tated genes in a pathogenic context. The design
of the corpus and the guidelines were published in
2017 (Wang et al., 2018), and a case study of us-
ing such an annotated corpus for drug repurposing
was successfully performed in 2019, unveiling po-
tential associations of variations with a wide spec-
trum of human diseases (Zhou et al., 2019). Since
then, the whole annotation work took 20 months,
with involvement of four annotators.

Using the corpus the AGAC track of BioNLP
Open Shared Tasks 2019 was organized, which
was participated by 5 teams. In this paper,
both the AGAC corpus and AGAC track are
introduced, and the performance of the par-
ticipants are presented. The full information
of the AGAC track is available at the web-
site, https://sites.google.com/view/
bionlp-ost19-agac-track.

2 The AGAC corpus and shared task

2.1 Corpus preparation

We collected abstracts by Mesh terms “Mu-
tation/physiopathology” and “Genetic Disease”.
AGAC is annotated for eleven types of named en-
tities, which categorized into bio-concepts, regula-
tion types, and other entities, and for two types of
thematic relations between them. All the types of
named entities and thematic relations are defined
in the AGAC ontology (see Figure 1).

While the full description of the named entity
types can be found in the AGAC guideline book
(Wang et al., 2018), briefly speaking, it is designed
to include the entities which are relevant to genetic
variations and forthcoming phenotype changes at
molecular and cellular levels, with a focus on trac-
ing the biological semantics of LOF and GOF mu-
tations.

Since AGAC aims to annotate mutations and
the subsequent bio-processes caused by the mu-
tations, the two thematic role types, themeOf
and causeOf, of which the original use are in-
troduced by the GENIA event annotation (Kim
et al., 2008), are adopted to represent relations be-
tween AGAC entities. Note that here the use of
the themeOf and causeOf relations are a little

bit different from their use in linguistic analysis,
in the sense that they are not confined to be used
only around verbs. In AGAC, the thematic rela-
tions may be used to connect two named entities,
both in noun forms. Below is the semantics of the
two thematic relations:

• ThemeOf: a theme of an event (or a regula-
tory named entities) is the object which un-
dergoes a change of its state due to the event.

• CauseOf: a cause of an event (or a regula-
tory named entities) is the object which leads
the event to happen.

In order to help understanding of the semantics
of the AGAC entities, they are mapped to corre-
sponding MeSH terms (Lipscomb, 2000) when-
ever possible (see Figure 1).

In addition to the annotations for named entities
and relations, each abstract in AGAC is annotated
with a statement of a LOF/GOF-classified gene-
disease association. The statement is expressed by
a triple: a gene, the type of function change (GOF
or LOF), and a disease. For example, if an abstract
reports an association between a mutation of SHP-
2, which causes a GOF type of function change,
and leukemia, the abstract is annotated with the
triple, SHP-2; GOF; leukemia. Note that it is the
most straightforward form of knowledge piece to
apply the LOF-agonist/GOF-antagonist hypothe-
sis to discovery of candidate chemicals for dis-
eases, which is the primary application scenario
of AGAC.

2.2 Statistics and characteristics of AGAC
corpus

AGAC corpus is annotated by four annotators:
a main annotator and three fellow annotators.
To evaluate the quality of the annotations, inter-
annotator agreement (IAA) was measured in an
asymmetric way: the performance of the main an-
notator was assumed as the “oracle”, to which the
performance of each fellow annotator was com-
pared. The IAAs of the three annotators were 0.68,
0.78 and 0.70, respectively, in F-score.

To serve as the training and test data sets of the
AGAC shared task, the corpus was randomly di-
vided into halves: 250 abstracts for each of the
training and the test data sets. The basic statis-
tics of the abstracts, sentences, and annotations are
shown in Table 1.

https://sites.google.com/view/bionlp-ost19-agac-track
https://sites.google.com/view/bionlp-ost19-agac-track
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Figure 1: AGAC ontology.

Table 1: Statistics of annotations in total, training and test sets

Total Training set Test set

# of Abstracts 500 250 250

# of Sentences 5,080 2,534 2,546

# of Named entities 5,741 3,317 2,424
�Bio-concept Named Entities 2,274 1,428 846
Var (Variation) 1,304 735 569
MPA (Molecular Physiological Activity) 618 418 200
Interaction 35 28 7
Pathway 38 24 14
CPA (Cell Physiological Activity) 279 223 56
�Regulatory Named Entities 1,514 905 609
Regulation 613 215 398
Positive Regulation 406 323 83
Negative Regulation 495 367 128
�Other Entities 1,953 984 969
Disease 751 336 415
Gene 1,004 529 475
Protein 150 90 60
Enzyme 48 29 19

# of Thematic roles 4,677 2,729 1,948
ThemeOf 2,986 1,698 1,288
ThemeOf (Intra/inter sentential) (2910/76) (1657/41) (1253/35)
CauseOf 1,691 1,031 660
CauseOf (Intra/inter sentential) (1581/110) (961/70) (620/40)
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The AGAC corpus is characterized in three
terms: imbalanced data, selective annotation, and
latent topic annotation.

i) Imbalanced Data: The statistics in Table 1
clearly shows that the entity distribution is
imbalanced over the entity types, e.g. 1,304
Var vs. 35 Interaction annotations, and
across the training and test data sets, e.g.,
481 vs. 200 MPA annotations in the training
and test data sets, respectively. In the mean
time, the distribution of several named en-
tities shows imbalance between training set
and test set. For instance, there are 418
MPA in training set, while the amount is 200
in test set. Similarly, the amount ratio of
Interaction and Pathway is 28:7 and
24:14. As in the thematic roles, the amount
of CauseOf in training set is mostly doubled
than that in test set.

ii) Selective Annotation: According to the
AGAC guidelines (Wang et al., 2018), anno-
tations are made only to the sentences which
carry sufficient information to mine a gene-
disease association with LOF/GOF specifi-
cation, i.e., a sentence is annotated only if
it contains specific gene, mutation, disease
mentions. In other words, the named entities
appearing in a sentence are not annotated if
the sentence misses any of the required enti-
ties. Later, it has turned out to be a tricky fea-
ture, which makes the NER task based on the
corpus a much more complicated one com-
pared to typical NER tasks (See Section 5).

iii) Latent Topic Annotation: The annotation
of each abstract with a LOF/GOF-classified
gene-disease association may be regarded as
a kind of latent topic annotation, in the sense
that the LOF/GOF context of a gene-disease
association may not be directly visible from
the text. This feature makes the AGAC
annotation unique: the annotation is really
geared toward knowledge discovery for drug
repurposing based on the LOF-agonist/GOF-
antagonist hypothesis. Note that the ago-
nist or antagonist information of a chem-
ical is available in various databases like
Drugbank (Wishart et al., 2017) or Ther-
apeutic Target Database (TTD) (Li et al.,
2017), which means, if mining of LOF/GOF-
classified gene-disease association is possible

in a large scale, mining of drug candidates for
diseases also will be possible in a large scale.

2.3 Task Definition of AGAC Track
AGAC track consists of three tasks: Task 1:
named entity recognition, Task 2: thematic re-
lation extraction, and Task 3: mutation-disease
knowledge discovery. While participants were al-
lowed to choose the tasks they would participate,
due to the dependency between the tasks, it was
expected that participating all the three tasks might
maximize the chance of high performance: Task 2
requires the result of Task 1, and Task 3 may be
benefited from the result of Task 1 and 3. Below
is the details of the three tasks:

Task 1. NER: To recognize named entities
appearing in given texts, and to assign them
their entity class, based on the AGAC on-
tology. Figure 2 shows an example, where
four spans, “protein”, “Truncating”, “DNMs”,
and “SHROOM3” are annotated as Protein,
Negative Regulation, Variation, and
Gene, respectively. The participants are required
to produce the result in the PubAnnotation JSON
format. Note that while compound nouns are

Figure 2: Annotation example for Task 1.

common, there is no discontinuous or overlapping
spans annotated as named entities, in AGAC.

Task 2. Thematic relation identification:
To identify the thematic relation, ThemeOf,
CauseOf, between named entities. Figure 3
shows an example, where two ThemeOf rela-
tions, Protein → Negative regulation
and Gene → Variation, and one CauseOf
relation, Negative regulation →
Variation, are annotated. Note that the
relation annotations are added on top of the NER
annotations. Note also that relations may be intra-
or inter-sentential, and in AGAC, 3.98% of the
relations are inter-sentential.

Task 3. Mutation-disease knowledge discovery:
To extract the triples of a gene, a function change,
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Figure 3: Annotation example for Task 2

and a disease. A function change is classified
into four classes: Loss of Function(LOF), Gain
of Function(GOF), Regulation(REG), and Com-
plex(COM). Figure 4 shows an example, where
the PubMed abstract, 25805808, is annotated with
the triple, SHROOM3; LOF; Neural tube defects.
Participants are requried to produce a text file
where a quadraple (a PubMed Id, plus a triple)
takes one line. Note that while this task is inde-

Figure 4: Annotation example for Task 3

pendent from Task 1 and 2, syntactically, it may
be benefited from the results of the two tasks, se-
mantically.

For better understanding, let us pick a sen-
tence, “Mutations in SHP-2 phosphates that
cause hyperactivation of its catalytic activity
have been identified in human leukemia, partic-
ularly juvenile myelomonocytic leukemia.” From
a biological view, hyperactivation of catalytic
activity is clearly a description of Gain-of-
Function. Henceforth, this sentence carries clear
semantic information that, a gene “SHP-2” af-
ter mutation plays a GOF function related to
the disease “juvenile myelomonocytic leukemia”.
Therefore, the Task 3 requires the triple from
this sentence, i.e., SHP-2;GOF;juvenile
myelomonocytic leukemia.

In another sentence, “Lynch syndrome (LS)
caused by mutations in DNA mismatch re-
pair genes MLH1.”, it describes the association
between disease “Lynch syndrome” and gene
“MLH1”, but the phrase “caused by” means no
loss or gain, hence the triple from this sentence

should be MLH1;REG;Lynch syndrome.
In a COM example, “Here, we describe a

fourth case of a human with a de novo KCNJ6
(GIRK2) mutation, who presented with clinical
findings of severe hyperkinetic movement disor-
der and developmental delay. Heterologous ex-
pression of the mutant GIRK2 channel alone
produced an aberrant basal inward current that
lacked G protein activation, lost K+ selectivity
and gained Ca2+ permeability.” , the descrip-
tion “lost K+ selectivity and gained Ca2+ per-
meability” shows both LOF and GOF, therefore
the function change can not be labeled as LOF or
GOF but COM, GIRK2;COM;hyperkinetic
movement disorder.

2.4 Sample data for task 1, 2, and 3
Figure 5 shows a sample text of AGAC corpus, the
format of which is JSON. The bold term “target”
is the address of the annotated text. “sourcedb” is
where the text original from, all the text in AGAC
corpus are from PubMed. “sourceid” is pmid of
the text. “text” contains the raw abstract.

1) “denotations” for Task 1:

“denotations” contains the named entity anno-
tations corresponding to Task 1. Each named
entity annotation has an “id”; a “span”: its po-
sition in the abstract; an “obj”: the named en-
tity it belongs to.

2) “relations” for Task 2:

“relations” contains the thematic roles between
the named entities, which corresponds to Task
2. Each relation contains an “id”; a “pred”: the
thematic roles; “subj” and “obj”: the named en-
tity “id” that the relation associates, and the di-
rection of the relation is from “subj” to “obj”.

Note that Task 2 requires the result of Task 1.

3) Triples for Task 3:

25805808;SHROOM3;LOF;Neural tube de-
fects Triples showed above is the result of
Task 3, which is required to be extracted
from the sample text. So, for the result
template during evaluation, the standard for-
mat of triples is: pmid;gene;function
change;disease.

The visualization of part of this sample text is
shown in Figure 5, which is presented by the an-
notation platform PubAnnotation.
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Figure 5: Sample data for Task 1, 2 and 3

3 Evaluation methods

The performance of the participants was evalu-
ated in standard precision, recall, and F-score.
For Task 1 and 2, the PubAnnotation Evalua-
tor1 tool was used, with a parameter setting for
strict span matching (soft match characters = 0 &
soft match words = 0). For task 2, for a predicted
relation to be counted as a true positive, the two
entities participating in the relation have to be cor-
rectly predicted, together with the type of the re-
lation. Note that the evaluation criteria applied to
Task 1 and 2 are very strict.

For Task 3, a custom evaluation tool was pro-
vided by the organizers Unlike Task 1 and 2, for
Task 3, a relaxed matching criteria was applied:
a “Function-Classified Gene-Disease Assciation”
(FCGDA) statement is counted as correct one if
the function classification (LOF or GOF) is cor-
rectly recognized. The motivation of using the re-
laxed matching criteria was that it was fairly a new
type of task, making a highly challenging one, and
and that prediction of the LOF/GOF context was
of the primary interest.

4 Results and observations

Overall, five teams participated in the tasks of the
AGAC track: three teams in both Task 1 and 2, one
team only in Task 1, and one team (through a late
submission) only in Task 3. The results of Task 1,
2, and 3 are presented in Table 2, 3, 4, respectively.

1https://github.com/pubannotation/
pubannotation_evaluator

Looking into the methods used by the par-
ticipants, it is observed that, although the num-
ber of participants is not so high, various meth-
ods are well mixed: a probabilistic sequence la-
beling model, e.g., CRF (Lafferty et al., 2001)),
a kernel-based linear classification model, e.g.,
SVM, modern neural network models, e.g., CNN
(Lawrence et al., 1997) and Bi-LSTM (Hochre-
iter and Schmidhuber, 1997; Sundermeyer et al.,
2012),We collected abstracts by Mesh terms “Mu-
tation/physiopathology” and “Genetic Disease”.

and also a joint learning. It is also observed that
use of BERT (Devlin et al., 2018), a pre-trained
language representation model, was popular.

4.1 Task 1

In Task 1, DX-HITSZ used “JFB-NER” model
which was a joint learning model with parameters
fine tuned bioBert. Zheng-UMASS used a hierar-
chical multi-task learning model for both Named
entity recognition and Relation Extraction. In this
model 12 entities were decomposed into three sub-
tasks: (1) Var, MPA,CPA,Enzyme for part one (2)
Gene, Pathway, Protein, Disease for part two (3)
PosReg, Interaction, NegReg, Reg for part three.
Besides, they used Bert embedding, customized
embedding, and Char level embedding to repre-
sent inputs sentences. Then, the bi-LSTM en-
coders were used as encoders for each of the sub-
tasks. YaXXX-SiXXX/LMX used Bi-LSTM CRF
with linguistic features and ensemble 3 best mod-
els on 3 data splits. Finally, DJDL-HZAU used
traditional CRF method and combined with some

https://github.com/pubannotation/pubannotation_evaluator
https://github.com/pubannotation/pubannotation_evaluator
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Table 2: Participants Performance of Task 1

Participants Precision Recall F-score Main NLP techniques

1st DX-HITSZ 0.63 0.56 0.60 Bert, joint learning
* Baseline 0.50 0.51 0.50 Bert, joint learning
2nd Zheng-UMASS 0.36 0.59 0.45 Bert, CNN, Bi-LSTM
3rd YaXXX-SiXXX/LMX 0.55 0.28 0.37 CRF, Bi-LSTM
4th DJDL-HZAU 0.16 0.25 0.20 CRF

*: Baseline.

Table 3: Participants Performance of Task 2

Participants Precision Recall F-score Main NLP techniques

1st Zheng-UMASS 0.40 0.31 0.35 Bert, CNN, Bi-LSTM
2nd DX-HITSZ 0.61 0.16 0.25 Bert, joint learning
3rd YaXXX-SiXXX/LMX 0.05 0.02 0.03 SVM

Table 4: Participants Performance of Task 3

Participants Precision Recall F-score Main NLP techniques

* Baseline 0.72 0.59 0.65 Bert, joint learning
L Ashok-BenevolentAI 0.26 0.20 0.23 Bert

*: Baseline
L: Late submission.

linguistic features.

4.2 Task 2

In Task 2, Zheng-UMASS used a hierarchical
multi-task learning model for both Named entity
recognition and Relation Extraction. In relation
extraction part the model shared the same encod-
ing layers with Named entity recognition part.
DX-HITSZ used a simple fine tuned bioBert, re-
fer as ”SB-RE”. The F-score they obtained is 0.35
and 0.25, respectively. Furthermore, YaXXX-
SiXXX/LMX converted the task 2 into a classifi-
cation model and used the traditional support vec-
tor machine to obtain a F-score of 0.03.

4.3 Task 3

In Task 3, Ashok-BenevolentAI used BERT as
well to extract “gene function change disease
triples. They encoded the pair of mentions and
their textual context as two consecutive sequences
and then used a single linear layer to classify their
relation into five classes. It is noted that none
of the results in Task 1 and Task 2 were jointly
learned in this model.

As the task organizer, AGAC team provided
baseline method for Task 1 and 3. We used BERT
to learn semantic structure of the sentences, and
use joint learning for output sequence labeling in
Task 1 and triple recognition in Task 3.

4.4 Summary

To sum up, the best performance for Task 1 was
0.6 in F-score, which was obtained by DX-HITSZ.
It outperformed the reference method provided by
the organizers by 0.10 in F-score. For task 2, the
base performance was 0.35, which was acheived
by Zheng-UMASS. The best performance for
Task 1 and 2 are quite low compared to other
NER and RE tasks. We attribute the reason to the
strict evaluation criteria and the selective annota-
tion characteristics of the AGAC corpus, the latter
of which is discussed in Section 5. For Task 3,
while the reference performance provided by the
organizers achieved a moderate performance, 0.65
in F-score, the only participant achieved a much
lower performance, 0.26. We attribute the reason
to the fact that the team did not use the results of
Task 1 and 2 which we expected critical to perform
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Task 3.

5 Discussion and Conclusion

In this section, the “selective annotation” and
“latent topic annotation” features of AGAC are
reviewed and future research directions are dis-
cussed.

5.1 Selective annotation makes NER
challenging

As suggested in the previous discussion, state-
of-art methods in NLP community, like BERT
and joint learning, are frequently tested in AGAC
track. Comprehensive investigation of the perfor-
mance results show the effectiveness and disad-
vantages of these method.

Unlike normal sequence labelling task, AGAC
track requires the artificial intelligence method to
perform NER only when the sentence exactly fit
the GOF/LOF topic. Here, “selective annotation”
attribute refers that only the core named entities
or phrase within a sentence which carries clear
function change semantics is annotated. Actu-
ally, the design with this attribute stem from real
scenario of the drug knowledge discovery where
curators need to trace and extract exact relevant
function change information of a mutated gene
among texts. Unfortunately, this attribute also
make AGAC track a fairly challenging task to ful-
fill.

The performances comparison in AGAC track
shows that the modern NLP strategies like BERT
propel the traditional sequence labeling task to
the full strength. Both the team won the first
position and the baseline method use BERT and
joint learning model. As a conclusion, sophisti-
cated language representative model is an effec-
tive way to handle sequence labeling in AGAC re-
search. In addition, LOF/GOF recognition with-
out using results of Task 1 and 2 failed to out-
perform the baseline method which make good
use of the named entities in AGAC. It hints that
joint learning model is a proper integrated tasks
solution for NER, thematic role recognition and
LOF/GOF triplet recognition.

In all, the “Selective annotation” attribution
make AGAC track more challenging than tradi-
tional sequence labeling task. Just mocking the
human annotator who make annotation with suffi-
cient LOF or GOF semantics consideration, a suc-
cessful model should discern the full semantics

when correctly performing the labeling. Hope-
fully, the performance of the AGAC track will be
enhanced by a design of a more intellectual learn-
ing model, which is capable of capturing both the
sequence labeling and the triple information, and
therefore making tactical adjustment.

5.2 The potential of latent topic annotation

The purpose of AGAC track for drug repurpos-
ing requires comprehensive cooperation among
BioNLP and Bioinformatics communities, even in
general, NLP and Biology communities. Though
none of the participants attempts to solve Task 3
due to the domain gap of computer science and
life science, a cross disciplinary cooperation is still
promising, especially in the era of Multi-Omics
data (Groen et al., 2016).

“Latent topic annotation” attribute refers to
comprehensive integration of drug related knowl-
edge and deep cooperation in a cross-disciplinary
manner. As mentioned in the introduction, the bi-
ological idea of the AGAC design is consistent
with the mainstream phenotype mining strategy as
PheWAS (Rastegar-Mojarad et al., 2015). In ad-
dition, the literature review as well suggests that
BioNLP and computational method shed light to
drug-related knowledge discovery (Gachloo et al.,
2019). In our early attempt of AGAC applica-
tion (Zhou et al., 2019), a PubMed-wide GOF and
LOF recognition is successfully achieved by using
AGAC as training data. Specifically, AGAC cor-
pus offers abundant semantic information in the
function change recognition, and helps to evaluate
the GOF/LOF topic of a Pubmed abstract.

All of the above facts hint that well formed
knowledge structure in AGAC is capable of en-
suring nice application of function change inves-
tigation, and good commanding of the domain
knowledge is the key point to propel the research
of drug repurposing. Henceforth, it is promis-
ing to develop deep cooperation among BioNLP
and Bioinformatics communities based on the out-
come of AGAC track competition.

6 Data Availability

The AGAC corpus is developed and
made available in the PubAnnotation plat-
form, which is technically supported by
Database Center for Life Science (DBCLS),
Japan. Link to retrieve the data: http:
//pubannotation.org/projects/

http://pubannotation.org/projects/AGAC_test/annotations.tgz
http://pubannotation.org/projects/AGAC_test/annotations.tgz
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AGAC_test/annotations.tgz.
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