@inproceedings{lopez-ubeda-etal-2019-using,
title = "Using Snomed to recognize and index chemical and drug mentions.",
author = "L{\'o}pez {\'U}beda, Pilar and
D{\'i}az Galiano, Manuel Carlos and
Urena Lopez, L. Alfonso and
Martin, Maite",
editor = "Jin-Dong, Kim and
Claire, N{\'e}dellec and
Robert, Bossy and
Louise, Del{\'e}ger",
booktitle = "Proceedings of the 5th Workshop on BioNLP Open Shared Tasks",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5718/",
doi = "10.18653/v1/D19-5718",
pages = "115--120",
abstract = "In this paper we describe a new named entity extraction system. Our work proposes a system for the identification and annotation of drug names in Spanish biomedical texts based on machine learning and deep learning models. Subsequently, a standardized code using Snomed is assigned to these drugs, for this purpose, Natural Language Processing tools and techniques have been used, and a dictionary of different sources of information has been built. The results are promising, we obtain 78{\%} in F1 score on the first sub-track and in the second task we map with Snomed correctly 72{\%} of the found entities."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lopez-ubeda-etal-2019-using">
<titleInfo>
<title>Using Snomed to recognize and index chemical and drug mentions.</title>
</titleInfo>
<name type="personal">
<namePart type="given">Pilar</namePart>
<namePart type="family">López Úbeda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manuel</namePart>
<namePart type="given">Carlos</namePart>
<namePart type="family">Díaz Galiano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">L</namePart>
<namePart type="given">Alfonso</namePart>
<namePart type="family">Urena Lopez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maite</namePart>
<namePart type="family">Martin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 5th Workshop on BioNLP Open Shared Tasks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kim</namePart>
<namePart type="family">Jin-Dong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nédellec</namePart>
<namePart type="family">Claire</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bossy</namePart>
<namePart type="family">Robert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Deléger</namePart>
<namePart type="family">Louise</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper we describe a new named entity extraction system. Our work proposes a system for the identification and annotation of drug names in Spanish biomedical texts based on machine learning and deep learning models. Subsequently, a standardized code using Snomed is assigned to these drugs, for this purpose, Natural Language Processing tools and techniques have been used, and a dictionary of different sources of information has been built. The results are promising, we obtain 78% in F1 score on the first sub-track and in the second task we map with Snomed correctly 72% of the found entities.</abstract>
<identifier type="citekey">lopez-ubeda-etal-2019-using</identifier>
<identifier type="doi">10.18653/v1/D19-5718</identifier>
<location>
<url>https://aclanthology.org/D19-5718/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>115</start>
<end>120</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Using Snomed to recognize and index chemical and drug mentions.
%A López Úbeda, Pilar
%A Díaz Galiano, Manuel Carlos
%A Urena Lopez, L. Alfonso
%A Martin, Maite
%Y Jin-Dong, Kim
%Y Claire, Nédellec
%Y Robert, Bossy
%Y Louise, Deléger
%S Proceedings of the 5th Workshop on BioNLP Open Shared Tasks
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F lopez-ubeda-etal-2019-using
%X In this paper we describe a new named entity extraction system. Our work proposes a system for the identification and annotation of drug names in Spanish biomedical texts based on machine learning and deep learning models. Subsequently, a standardized code using Snomed is assigned to these drugs, for this purpose, Natural Language Processing tools and techniques have been used, and a dictionary of different sources of information has been built. The results are promising, we obtain 78% in F1 score on the first sub-track and in the second task we map with Snomed correctly 72% of the found entities.
%R 10.18653/v1/D19-5718
%U https://aclanthology.org/D19-5718/
%U https://doi.org/10.18653/v1/D19-5718
%P 115-120
Markdown (Informal)
[Using Snomed to recognize and index chemical and drug mentions.](https://aclanthology.org/D19-5718/) (López Úbeda et al., BioNLP 2019)
ACL