@inproceedings{xiong-etal-2019-bacteria,
title = "Bacteria Biotope Relation Extraction via Lexical Chains and Dependency Graphs",
author = "Xiong, Wuti and
Li, Fei and
Cheng, Ming and
Yu, Hong and
Ji, Donghong",
editor = "Jin-Dong, Kim and
Claire, N{\'e}dellec and
Robert, Bossy and
Louise, Del{\'e}ger",
booktitle = "Proceedings of the 5th Workshop on BioNLP Open Shared Tasks",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5723/",
doi = "10.18653/v1/D19-5723",
pages = "158--167",
abstract = "abstract In this article, we describe our approach for the Bacteria Biotopes relation extraction (BB-rel) subtask in the BioNLP Shared Task 2019. This task aims to promote the development of text mining systems that extract relationships between Microorganism, Habitat and Phenotype entities. In this paper, we propose a novel approach for dependency graph construction based on lexical chains, so one dependency graph can represent one or multiple sentences. After that, we propose a neural network model which consists of the bidirectional long short-term memories and an attention graph convolution neural network to learn relation extraction features from the graph. Our approach is able to extract both intra- and inter-sentence relations, and meanwhile utilize syntax information. The results show that our approach achieved the best F1 (66.3{\%}) in the official evaluation participated by 7 teams."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xiong-etal-2019-bacteria">
<titleInfo>
<title>Bacteria Biotope Relation Extraction via Lexical Chains and Dependency Graphs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wuti</namePart>
<namePart type="family">Xiong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fei</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ming</namePart>
<namePart type="family">Cheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hong</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Donghong</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 5th Workshop on BioNLP Open Shared Tasks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kim</namePart>
<namePart type="family">Jin-Dong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nédellec</namePart>
<namePart type="family">Claire</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bossy</namePart>
<namePart type="family">Robert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Deléger</namePart>
<namePart type="family">Louise</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>abstract In this article, we describe our approach for the Bacteria Biotopes relation extraction (BB-rel) subtask in the BioNLP Shared Task 2019. This task aims to promote the development of text mining systems that extract relationships between Microorganism, Habitat and Phenotype entities. In this paper, we propose a novel approach for dependency graph construction based on lexical chains, so one dependency graph can represent one or multiple sentences. After that, we propose a neural network model which consists of the bidirectional long short-term memories and an attention graph convolution neural network to learn relation extraction features from the graph. Our approach is able to extract both intra- and inter-sentence relations, and meanwhile utilize syntax information. The results show that our approach achieved the best F1 (66.3%) in the official evaluation participated by 7 teams.</abstract>
<identifier type="citekey">xiong-etal-2019-bacteria</identifier>
<identifier type="doi">10.18653/v1/D19-5723</identifier>
<location>
<url>https://aclanthology.org/D19-5723/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>158</start>
<end>167</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Bacteria Biotope Relation Extraction via Lexical Chains and Dependency Graphs
%A Xiong, Wuti
%A Li, Fei
%A Cheng, Ming
%A Yu, Hong
%A Ji, Donghong
%Y Jin-Dong, Kim
%Y Claire, Nédellec
%Y Robert, Bossy
%Y Louise, Deléger
%S Proceedings of the 5th Workshop on BioNLP Open Shared Tasks
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F xiong-etal-2019-bacteria
%X abstract In this article, we describe our approach for the Bacteria Biotopes relation extraction (BB-rel) subtask in the BioNLP Shared Task 2019. This task aims to promote the development of text mining systems that extract relationships between Microorganism, Habitat and Phenotype entities. In this paper, we propose a novel approach for dependency graph construction based on lexical chains, so one dependency graph can represent one or multiple sentences. After that, we propose a neural network model which consists of the bidirectional long short-term memories and an attention graph convolution neural network to learn relation extraction features from the graph. Our approach is able to extract both intra- and inter-sentence relations, and meanwhile utilize syntax information. The results show that our approach achieved the best F1 (66.3%) in the official evaluation participated by 7 teams.
%R 10.18653/v1/D19-5723
%U https://aclanthology.org/D19-5723/
%U https://doi.org/10.18653/v1/D19-5723
%P 158-167
Markdown (Informal)
[Bacteria Biotope Relation Extraction via Lexical Chains and Dependency Graphs](https://aclanthology.org/D19-5723/) (Xiong et al., BioNLP 2019)
ACL