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Abstract

This paper describes our system developed for
the coreference resolution task of the CRAFT
Shared Tasks 2019. The CRAFT corpus is
more challenging than other existing corpora
because it contains full text articles. We have
employed an existing span-based state-of-the-
art neural coreference resolution system as
a baseline system. We enhance the system
with two different techniques to capture long-
distance coreferent pairs. Firstly, we filter
noisy mentions based on parse trees with in-
creasing the number of antecedent candidates.
Secondly, instead of relying on the LSTMs,
we integrate the highly expressive language
model–BERT into our model. Experimental
results show that our proposed systems sig-
nificantly outperform the baseline. The best
performing system obtained F-scores of 44%,
48%, 39%, 49%, 40%, and 57% on the test
set with B3, BLANC, CEAFE, CEAFM, LEA,
and MUC metrics, respectively. Additionally,
the proposed model is able to detect coreferent
pairs in long distances, even with a distance of
more than 200 sentences.

1 Introduction

Coreference resolution is important not only in
general domains but also in the biomedical do-
main. The Colorado Richly Annotated Full Text
(CRAFT) corpus (Cohen et al., 2017) was con-
structed with an aim of boosting the performance
of the task in the biomedical literature. Un-
like other corpora, CRAFT is comprised of full
text articles or full papers, its coreferent chains
are arbitrarily long; the mean length of corefer-
ent chains is 4 while the longest chain is 186,
which makes the resolution even more difficult
than usual. The corpus has been fully released in
the CRAFT Shared Task 2019. In this paper, we

present our approach to address the coreference
resolution task in this challenging corpus.

We employ the state-of-the-art end-to-end
coreference system (Lee et al., 2017) as our base-
line. The system generates all continuous se-
quences of words (or spans) in each sentence as
mention candidates, which means the number of
candidates increases linearly to the number of sen-
tences. Such candidates may contain a large num-
ber of noisy spans, which are spans in a sentence
that do not fit any noun phrases according to the
corresponding parse tree. Such noisy spans are of-
ten wasteful when being included in the list of can-
didates for the coreference resolution step. Espe-
cially for the CRAFT corpus, of which the average
number of sentences is more than 300, the num-
ber of noisy spans would be many and needs to
be reduced. Also, our observations on the CRAFT
corpus show that in many cases, a mention and its
antecedent are far away, e.g., a mention can occur
in the result section of a paper while its antecedent
is in the abstract section.

To address these problems, we enhance the
baseline system in two ways; we propose to filter
noisy spans by using syntactic information and in-
crease the number of antecedent candidates to cap-
ture such long-distance coreferent pairs. We fur-
ther boost the system by replacing the underlying
Long Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) layer with the Bidirec-
tional Encoder Representations from Transformer
(BERT) model (Devlin et al., 2019)—a contextu-
alized language model that can efficiently capture
context in a wide range of NLP tasks.

We have evaluated our system on six common
metrics for coreference resolution including B3,
BLANC, CEAFE, CEAFM, LEA, and MUC us-
ing the official evaluation script provided by the
shared task organizers. By increasing the num-
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ber of antecedents and filtering noisy ones, we
could boost the recall of mention detection, hence
improving the performance of coreference resolu-
tion. When incorporating BERT into the system,
we could attain better scores in both mention de-
tection and coreference resolution at every met-
rics.

Our contributions are as follows.

• We proposed a new method to filter noisy
spans, which is a weakness of the base-
line system (Lee et al., 2017). Our filter-
ing method based on syntactic trees reduced
up to 90% noisy spans but still kept 93%
of correct mentions on the development set.
The method helps our model more computa-
tionally efficient than the baseline one, hence
allowing us to increase the number of an-
tecedent candidates to capture long-distance
coreferent pairs.

• We successfully integrated the BERT model
to replace the LSTM layers for coreference
resolution task and obtained significant im-
provement.

• Although we only experimented our model
with the CRAFT corpus, our proposed
method is general enough to be applied to
other corpora with long documents.

2 Methods

2.1 LSTM-based Baseline Model
Our model is based on the span-based end-to-end
model (Lee et al., 2017). The model employs an
exhaustive method to create any continuous se-
quences of words (spans) in each sentence. The
representation of a span from the k-th word to the
l-th word in a sentence is calculated by concate-
nating the information of the first word, last word,
head word, and the span width feature as follows:

mk,l = [hk, hl, ŵk..l, φ(k, l)] , (1)

where hk and hl are embeddings of the first and
last words calculated by a bidirectional LSTM;
ŵk..l is the weighted sum of the word vectors; and
φ(k, l) encodes the size of this span.

Mention scores are calculated using a feed-
forward neural network given the span represen-
tation.

sm(k, l) = wm · FFNNm(mk,l), (2)

where wm is a learnable weight vector; and FFNN
denotes a feed-forward neural network.

Since the span-based model generates a large
number of spans, a simple technique is used to
rank and filter spans based on a λ ratio multiplied
by the document size and choose the k best candi-
dates.

To find an antecedent for each mention, we cal-
culate the antecedent score as follows:

sa(mk,l,mu,v) = wa·FFNNa([mk,l,mu,v,

mk,l◦mu,v, φ((k, l), (u, v))]),
(3)

where wa is a learnable weight vector; ◦
denotes an element-wise multiplication and
φ((k, l), (u, v)) represents the feature vector
between the two mentions.

2.2 Coreference Resolution with BERT

Recently, BERT (Devlin et al., 2019) shows sig-
nificant improvement on various tasks in compar-
ison with other deep learning models including
LSTMs. This highly expressive language model is
able to capture contextual information effectively.
We, therefore, aim at investigating whether this ar-
chitecture can work effectively on coreference res-
olution in comparison with the previous LSTM-
based models.

In the BERT model, contextual representations
are assigned to sub-words in each word. We use
the representation of the last subword in a word as
the representation of the word and calculated the
span representation using Equation 1. Since the
pre-trained BERT model just supports sentences
up to 512 sub-words, we utilize a sliding window
technique with a window size of 512 and stride
of 256 for longer sentences and then retrieve sub-
word embeddings from windows so that each sub-
word has maximum left and right context. We
adapted the mention score and antecedent score
functions as Equations 2 and 3.

2.3 Learning Parse Trees to Filter Mentions

A weakness of the span-based baseline model is
that the greedy method generates a large number
of noisy, mostly meaningless, spans. Although
Lee et al. (2017) proposed to select k-best candi-
dates but this strategy is problematic when work-
ing on long documents, in which a mention is
probably far away from its true antecedents while
there are a large number of noisy candidates be-
tween them.
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Figure 1: Three patterns corresponding to three gold mentions are extracted from the parse tree: “a diurnal rhythm
with IOP” (pattern: (NP,IN,NP)), “the dark period of the day” (pattern: (NP)), “the day” (pattern: (NP))

In order to overcome this issue, we propose to
filter noisy spans based on their syntactic infor-
mation. We observe that in the task like corefer-
ence resolution, mentions usually follow syntac-
tic structures such as noun phrases. We therefore
learn a syntactic parsing model to parse sentences
and then extract patterns of gold mentions based
on the resulting parse trees.

The end-to-end parsing model is trained jointly
by the two following steps.

• Part-of-speech (POS) classifier: given raw
sentences from the training set, words are
split into sub-words with corresponding vec-
tors from BERT embeddings. The last sub-
word embedding of each word is used as the
word embedding and passed through a linear
layer to predict POS tags. The gold label POS
tags are obtained from the CRAFT training
set. Predicted POS tags and the raw texts will
be used as the input for the parsing model.

• Parser: our model is based on the con-
stituency parsing model (Kitaev and Klein,
2018), in which parse trees were built based
on a self-attentive encoder and achieved
state-of-the-art performance on the Penn

Treebank. Unlike their model, we replaced
the self-attentive encoder by BERT.

Figure 1 presents an example of using a parse
tree to extract patterns of gold mentions. In this
example, three patterns corresponding to three
gold mentions are extracted: (NP, IN, NP), (NP),
and (NP).

In the coreference resolution model, generated
spans that match with the learned patterns are fed
into the span representation layer to create span
embeddings, while unmatched spans are ignored.

3 Experimental Settings

3.1 Dataset

The organizer provided two subsets of the CRAFT
corpus (Cohen et al., 2017): one for training and
one for testing systems. To estimate our model be-
fore submitting testing results, we further divided
the original training set into two subsets, namely
training and development sets. Table 1 shows the
statistics numbers of these three subsets.

3.2 Compared Models

In order to show the effect of our proposed meth-
ods, we compare the following models.
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Train Dev Test
No. documents 60 7 30
No. sentences 19,575 2,156 9,099
Avg. sentences/doc 326.25 308.0 303.3
No. mentions 69,413 8,342 33,749
No. discon. men. 4,041 444 1,845
No. coreference. 14,679 1,623 7,185

Table 1: Characteristics of the CRAFT corpus. (discon.
men.: discontinuous mentions)

• LSTM: this is the baseline model (Lee et al.,
2017) based on LSTM. This model obtained
the state-of-the-art performance on general
domain. In this setting, all generated spans
are used for calculating mention scores. The
number of antecedent candidates was 250
and the λ = 0.25.

• LSTM filter: this is the same as the LSTM
baseline model, but we applied the filtering
method and increased the antecedent number
to 600 instead of 250.

• BERT: we employed the pre-trained SciB-
ERT model (Beltagy et al., 2019) instead of
using the LSTM as the baseline model. The
number of antecedent candidates was 600.

• BERT filter: we used the same settings as
BERT but we combined it with the filtering
method.

• E2E MetaMap (Trieu et al., 2018): this
model is based on the baseline model (Lee
et al., 2017) but it particularly incorpo-
rated semantic type features extracted from
the MetaMapLite (Demner-Fushman et al.,
2017) to address biomedical documents. The
maximum antecedent was 250.

The E2E MetaMap implementation is based
on the Tensorflow repository.1 Meanwhile, the
LSTM, LSTM filter, and BERT filter are based on
the PyTorch repository.2

For the BERT model, we employed the Py-
Torch Pretrained BERT repository.3 We trained

1https://github.com/kentonl/e2e-coref/
tree/1f37582e68

2https://github.com/allenai/allennlp/
tree/master/allennlp/models/coreference_
resolution

3https://github.com/huggingface/
pytorch-pretrained-BERT/tree/34cf67fd6c

Syntactic Patterns Frequency Ratio (%)
NP 40,639 58.55
NN 10,746 15.48
NML 3,462 4.99
PRP$ 1,012 1.46
NN, NN 1,012 1.46
NP, NN 678 0.98
LS 647 0.93

Table 2: The most frequent patterns of mentions in the
training set. Please check Appendix A for the definition
of relevant Penn Treebank labels.

the model with the Adam optimizer (Kingma and
Ba, 2015). We included gradient clipping and
dropout.

4 Results and Discussion

We firstly present the results of extracting patterns
to filter mentions. We then report and discuss the
performance of our models on the official test set.
In order to deeply investigate the effect of the pro-
posed method, we describe the intensive results of
ablation tests on the development set. We finally
conduct analysis to see how each model works
on each group of sentence-level distance between
mentions and antecedents.

4.1 Patterns of Gold Mentions
Table 2 reports some patterns4 with the highest
frequencies in the training set. In total, we ex-
tracted 1,561 unique patterns. To avoid low qual-
ity filtering, we kept patterns with a minimum fre-
quency threshold of 5. The threshold was chosen
from our experiments so that we could filter a large
number of noisy spans but still kept a high recall
on the development set. Specifically, this filtering
method helps to reduce up to 90% noisy spans but
still kept 93% of correct mentions on the develop-
ment set.

4.2 Evaluation on the Test Set
The results on the official test set are presented in
Table 3. In summary, our BERT filter obtained the
best performance on both mention and coreference
detection in all metrics.

Mention detection For mention detection, most
models obtained approximately the same preci-
sion of more than 70%. However, the recall

4The tag set in our patterns follows Penn Treebank POS
tags.

https://github.com/kentonl/e2e-coref/tree/1f37582e68
https://github.com/kentonl/e2e-coref/tree/1f37582e68
https://github.com/allenai/allennlp/tree/master/allennlp/models/coreference_resolution
https://github.com/allenai/allennlp/tree/master/allennlp/models/coreference_resolution
https://github.com/allenai/allennlp/tree/master/allennlp/models/coreference_resolution
https://github.com/huggingface/pytorch-pretrained-BERT/tree/34cf67fd6c
https://github.com/huggingface/pytorch-pretrained-BERT/tree/34cf67fd6c
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Metric Model
Mention Coreference

P R F P R F

B3

LSTM 0.7565 0.3578 0.4858 0.6177 0.1583 0.2520
LSTM filter 0.7292 0.4187 0.5320 0.5764 0.2524 0.3511
BERT 0.7416 0.5603 0.6383 0.5151 0.3544 0.4199
BERT filter 0.7314 0.5778 0.6456 0.5166 0.3838 0.4404
E2E MetaMap 0.6713 0.5272 0.5906 0.5247 0.2791 0.3644

BLANC

LSTM 0.7565 0.3578 0.4858 0.6434 0.2153 0.3227
LSTM filter 0.7292 0.4187 0.5320 0.6471 0.3903 0.4869
BERT 0.7416 0.5603 0.6383 0.5376 0.4350 0.4809
BERT filter 0.7314 0.5778 0.6456 0.5056 0.4731 0.4888
E2E MetaMap 0.6713 0.5272 0.5906 0.5297 0.4140 0.4648

CEAFE

LSTM 0.7565 0.3578 0.4858 0.3590 0.2076 0.2631
LSTM filter 0.7292 0.4187 0.5320 0.4100 0.2408 0.3034
BERT 0.7416 0.5603 0.6383 0.4366 0.3305 0.3762
BERT filter 0.7314 0.5778 0.6456 0.4544 0.3537 0.3978
E2E MetaMap 0.6713 0.5272 0.5906 0.3545 0.3101 0.3308

CEAFM

LSTM 0.7565 0.3578 0.4858 0.5141 0.2431 0.3301
LSTM filter 0.7292 0.4187 0.5320 0.5847 0.3357 0.4265
BERT 0.7416 0.5603 0.6383 0.5432 0.4104 0.4676
BERT filter 0.7314 0.5778 0.6456 0.5551 0.4385 0.4900
E2E MetaMap 0.6713 0.5272 0.5906 0.4662 0.3662 0.4102

LEA

LSTM 0.7565 0.3578 0.4858 0.5733 0.1331 0.2161
LSTM filter 0.7292 0.4187 0.5320 0.5415 0.2265 0.3194
BERT 0.7416 0.5603 0.6383 0.4692 0.3135 0.3759
BERT filter 0.7314 0.5778 0.6456 0.4753 0.3454 0.4000
E2E MetaMap 0.6713 0.5272 0.5906 0.4864 0.2433 0.3244

MUC

LSTM 0.7565 0.3578 0.4858 0.6765 0.3007 0.4164
LSTM filter 0.7292 0.4187 0.5320 0.6656 0.3798 0.4837
BERT 0.7416 0.5603 0.6383 0.6412 0.4842 0.5517
BERT filter 0.7314 0.5778 0.6456 0.6445 0.5111 0.5701
E2E MetaMap 0.6713 0.5272 0.5906 0.5995 0.4564 0.5182

Table 3: Results on the test set. The three official submissions of our team were BERT, BERT filter and
E2E MetaMap. The non-coreference scores of BLANC are reported in Appendix B.

of the BERT filter is much higher than those of
the LSTM and LSTM filter (57% vs. 35% and
41%, respectively). Consequently, the F-score of
the BERT filter is 16% and 11% points higher
than the LSTM and LSTM filter, respectively.
The E2E MetaMap is 5% points lower than the
BERT filter in F-score.

Coreference detection By obtaining the high-
est recall in mention detection, the BERT filter
could achieve the highest scores in coreference
detection in all metrics. Using the mention fil-
tering improved the baseline LSTM from 4-16%
points in F-score varied by metrics. When replac-
ing LSTM by BERT and combining with mention
filtering, we obtained significant improvements:

+19% points of B3 and LEA; +16% points of
MUC, BLANC and CEAFM; and +13% points of
CEAFE in F-score.

The E2E MetaMap performance is higher than
the LSTM and LSTM filter, but lower than the
BERT filter. As aforementioned, the LSTM
model is based on the PyTorch implementation
while the E2E MetaMap is based on the Tensor-
flow repository. Therefore it is difficult to verify
whether performance difference comes from us-
ing MetaMap features or from the implementation.
Due to time constraint, we have not conducted ex-
periments to clarify the reasons yet. We will leave
this as our future work.
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Metric Model
Mention Coreference

P R F P R F

B3

LSTM 0.7716 0.3782 0.5076 0.6387 0.1763 0.2764
LSTM filter 0.7193 0.4396 0.5457 0.5725 0.2572 0.3550
BERT 250 0.7288 0.5675 0.6381 0.5258 0.32 0.3979
BERT 0.7094 0.5742 0.6347 0.4807 0.3596 0.4115
BERT filter 0.7066 0.6014 0.6498 0.5021 0.3855 0.4361

BLANC

LSTM 0.7716 0.3782 0.5076 0.5665 0.1487 0.2356
LSTM filter 0.7193 0.4396 0.5457 0.5503 0.2235 0.3179
BERT 250 0.7288 0.5675 0.6381 0.5129 0.3256 0.3983
BERT 0.7094 0.5742 0.6347 0.4691 0.3168 0.3782
BERT filter 0.7066 0.6014 0.6498 0.5141 0.3757 0.4341

CEAFE

LSTM 0.7716 0.3782 0.5076 0.3659 0.2536 0.2996
LSTM filter 0.7193 0.4396 0.5457 0.4123 0.3252 0.3636
BERT 250 0.7288 0.5675 0.6381 0.3888 0.3672 0.3777
BERT 0.7094 0.5742 0.6347 0.4115 0.3674 0.3882
BERT filter 0.7066 0.6014 0.6498 0.4176 0.3993 0.4083

CEAFM

LSTM 0.7716 0.3782 0.5076 0.5285 0.2591 0.3477
LSTM filter 0.7193 0.4396 0.5457 0.5757 0.3518 0.4368
BERT 250 0.7288 0.5675 0.6381 0.5073 0.3952 0.4443
BERT 0.7094 0.5742 0.6347 0.5143 0.4163 0.4602
BERT filter 0.7066 0.6014 0.6498 0.5308 0.4518 0.4881

LEA

LSTM 0.7716 0.3782 0.5076 0.5974 0.1507 0.2407
LSTM filter 0.7193 0.4396 0.5457 0.5370 0.2276 0.3197
BERT 250 0.7288 0.5675 0.6381 0.4811 0.2805 0.3544
BERT 0.7094 0.5742 0.6347 0.4383 0.3196 0.3696
BERT filter 0.7066 0.6014 0.6498 0.4619 0.3464 0.3959

MUC

LSTM 0.7716 0.3782 0.5076 0.7065 0.3117 0.4325
LSTM filter 0.7193 0.4396 0.5457 0.6658 0.3783 0.4825
BERT 250 0.7288 0.5675 0.6381 0.6418 0.4743 0.5455
BERT 0.7094 0.5742 0.6347 0.6144 0.4850 0.5421
BERT filter 0.7066 0.6014 0.6498 0.6271 0.5179 0.5673

Table 4: Results on the development set.

4.3 Ablation Tests

We conducted experiments on the development
set to show the effect of using mention filtering
and BERT. In order to directly compare between
BERT and LSTM, we also conducted an exper-
iment with BERT and set a value of 250 to the
number of antecedent candidates. We named it
as BERT 250. Meanwhile, LSTM, LSTM filter,
BERT, BERT filter have the same settings as de-
scribed in Section 3.2. All of the results are re-
ported in Table 4.

Mention Filtering When we used mention fil-
tering, the mention detection precision dropped
6% points in the case of LSTM, but in the case of
BERT it was almost the same. However, the filter-

ing helped to improve recall in both cases, which
is important to the coreference detection step. As
a result, in the coreference resolution step, men-
tion filtering improved 2-8% points of F-score in
all metrics.

Using BERT Using BERT could significantly
boost the performance of the baselines in both
mention detection and coreference resolution. For
mention detection, BERT produced almost the
same precision with the LSTM but much higher
recall (+17% points), which led to an increase
of 10% points in F-score. For coreference de-
tection, BERT-based models outperformed the
LSTM-based ones from 4-14% points of F-scores
in all metrics.

In summary, when combining both techniques
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Figure 2: Numbers of correct predictions (true positives) grouped by sentence-level distance between a mention
and its antecedent in the development set. The detail results are reported in Appendix C.

(BERT filter vs. LSTM), we could make a signif-
icant increase of more than 14% points in F-score
for mention detection and from 11% to 20% points
in F-score in all metrics for coreference resolution
on the development set.

4.4 Analysis
To investigate the effect of distance between a
mention and its antecedent(s) on each model, we
calculated the number of true positive coreference
predictions in the development set and grouped
them by sentence-level distance. Specifically, we
divided the number of true positive predictions
into five groups: ≤10, 11-50, 51-100, 101-200,
and >200. The first two groups can be considered
as short-distance coreference, e.g., abstract papers
like the BioNLP dataset (Nguyen et al., 2011) with
an average of nine sentences per document. Mean-
while, the other three groups can be considered
as long-distance coreference like full papers in the
CRAFT corpus.

Distribution of coreferent pairs in gold data
As illustrated in Figure 2, only about 40.85% of
the gold pairs are in the groups of short distance
while the other 59.15% of them are in the groups
of long distance. This means that if a model cannot
deal with long distance coreference, pairs of men-
tions and antecedents in this region cannot be dis-
covered. Among those long distance pairs, 47.8%
are in between 51-200 sentences while the number
of pairs whose distance is more than 200 is about
11.35%.

The effect of mention filtering The results in
Figure 2 revealed that by using the filtering meth-
ods, we could effectively address long-distance
coreferent pairs. It can be seen from the figure
that the baseline model was good enough when
working on short distance pairs, and the filtering
may slightly harm the performance. However, for
longer distances, the filtering contributed to in-
creases of 5.46%, 55.26%, 84.60% and 100% for
the groups of 11-50, 51-100, 101-200, and >200,
respectively, in comparison with the baseline.

The effect of BERT Without using the filtering
method, BERT itself could capture a fairly large
number of long-distance pairs, which was even
better than the LSTM filter model.

Long-distance coreference When summing up
the results of long-distance groups, i.e., three
groups of 51-100, 101-200, and >200, we found
that the LSTM filter and BERT filter models
could predict 71.89% and 83.63% higher num-
ber of long-distance pairs than the LSTM one,
which indicates the effect of our model in us-
ing the filtering method and BERT for long docu-
ments. Additionally, for the most tough case of de-
tecting pairs in the distance of more than 200 sen-
tences, our LSTM filter model predicted 874 cor-
rect pairs (about 1.18% of the gold pairs), and the
BERT filter model predicted 1,081 correct pairs
(about 1.46% of the gold pairs). Meanwhile, the
LSTM model failed to detect pairs in this group.
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Recall problem It is necessary to note that al-
though our model improved the baseline LSTM
and obtained promising results, the recall is still
low in all groups of distance. For instance, the
best performing model, i.e., BERT filter could
cover only 50.90%, 45.38%, 39.08%, 31.71%, and
12.82% of the gold pairs in the groups of <=10,
11-50, 51-100, 101-200, >200, respectively. This
is an open issue that we will address in the future.

5 Conclusion

In this paper, we particularly address the chal-
lenge of coreference resolution in full text articles
in the CRAFT Shared Task 2019. Specifically,
we employ the span-based end-to-end model (Lee
et al., 2017) and enhance the model by utilizing a
syntax-based mention filtering method and BERT.
To filter noisy mentions, we jointly train a parsing
model with a POS classifier to obtain parse trees of
sentences. We then generate syntactic patterns of
gold mentions based on the resulting parse trees.
Any mentions that satisfy the generated patterns
will be fed into the coreference resolution model.
We finally incorporate BERT into our model. Ex-
perimental results on the CRAFT corpus indicate
that the proposed method is effective in capturing
long-distance coreferences in long documents.
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A Penn Treebank Labels

For the Penn Treebank labels in our syntactic pat-
terns, we follow the BioMedical Treebank tagset
definition (Warner et al., 2004). Please refer to Ta-
ble 5 for the detail description.

B Non-Coreference Results

Unlike other metrics, the BLANC metric also con-
tains non-coreference results. We report the re-
sults of the test set in Table 6.

C Results on (Mention-Antecedent) Pair
Distance

We present the detail results of each model and
the corresponding gold coreference grouped by
the sentence-level distance of mention-antecedent
pairs in Table 7. The results are calculated in five
groups of distance: <=10, 11-50, 51-100, 101-
200, >200.
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Tag Description
NP noun phrase
NN noun, singular or mass
NML sub-NP nominal substrings
PRP$ possessive pronoun
LS list item marker

Table 5: The definition of relevant Penn Treebank labels.

Metric Model
Mention Non-Coreference

P R F P R F BLANC-F

BLANC
LSTM 0.7565 0.3578 0.4858 0.5725 0.1314 0.2137 0.2682
LSTM filter 0.7292 0.4187 0.5320 0.5432 0.1796 0.2699 0.3784
BERT 0.7416 0.5603 0.6383 0.5537 0.3172 0.4033 0.4421
BERT filter 0.7314 0.5778 0.6456 0.5383 0.3356 0.4135 0.4512
E2E MetaMap 0.6713 0.5272 0.5906 0.4488 0.2812 0.3457 0.4053

Table 6: Non-coreference results for the BLANC metric on the testing set.

Model
<=10 11-50 51-100

TP G.R O.R TP G.R O.R TP G.R O.R
(%) (%) (%) (%) (%) (%)

LSTM 3,588 34.61 4.83 5,230 26.22 7.05 1,735 10.43 2.34
LSTM filter 3,164 30.52 4.26 5,532 27.73 7.45 3,878 23.31 5.23
BERT 250 5,347 51.58 7.20 9,015 45.19 12.15 5,115 30.75 6.89
BERT 4,651 44.87 6.27 8,062 40.41 10.86 5,381 32.35 7.25
BERT filter 5,276 50.90 7.11 9,053 45.38 12.20 6,502 39.08 8.76
Group Gold 10,366 100 13.97 19,949 100 26.88 16,636 100 22.41

Model
101-200 >200

TP G.R O.R TP G.R O.R
(%) (%) (%) (%)

LSTM 484 2.57 0.65 0 0.00 0.00
LSTM filter 3,143 16.69 4.23 874 10.37 1.18
BERT 250 4,163 22.10 5.61 527 6.25 0.71
BERT 4,798 25.47 6.46 620 7.35 0.84
BERT filter 5,974 31.71 8.05 1,081 12.82 1.46
Group Gold 18,837 100 25.38 8,431 100 11.36
Total Gold 74,219

Table 7: Results of models on each distance group; TP: True Positive; G.R: Group Ratio = True Positive/Group
Gold; O.R: Overall Ratio = True Positive/Total Gold


