@inproceedings{gupta-etal-2019-bionlp,
title = "{B}io{NLP}-{OST} 2019 {RD}o{C} Tasks: Multi-grain Neural Relevance Ranking Using Topics and Attention Based Query-Document-Sentence Interactions",
author = {Gupta, Pankaj and
Chaudhary, Yatin and
Sch{\"u}tze, Hinrich},
editor = "Jin-Dong, Kim and
Claire, N{\'e}dellec and
Robert, Bossy and
Louise, Del{\'e}ger",
booktitle = "Proceedings of the 5th Workshop on BioNLP Open Shared Tasks",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5730/",
doi = "10.18653/v1/D19-5730",
pages = "227--236",
abstract = "This paper presents our system details and results of participation in the RDoC Tasks of BioNLP-OST 2019. Research Domain Criteria (RDoC) construct is a multi-dimensional and broad framework to describe mental health disorders by combining knowledge from genomics to behaviour. Non-availability of RDoC labelled dataset and tedious labelling process hinders the use of RDoC framework to reach its full potential in Biomedical research community and Healthcare industry. Therefore, Task-1 aims at retrieval and ranking of PubMed abstracts relevant to a given RDoC construct and Task-2 aims at extraction of the most relevant sentence from a given PubMed abstract. We investigate (1) attention based supervised neural topic model and SVM for retrieval and ranking of PubMed abstracts and, further utilize BM25 and other relevance measures for re-ranking, (2) supervised and unsupervised sentence ranking models utilizing multi-view representations comprising of query-aware attention-based sentence representation (QAR), bag-of-words (BoW) and TF-IDF. Our best systems achieved 1st rank and scored 0.86 mAP and 0.58 macro average accuracy in Task-1 and Task-2 respectively."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gupta-etal-2019-bionlp">
<titleInfo>
<title>BioNLP-OST 2019 RDoC Tasks: Multi-grain Neural Relevance Ranking Using Topics and Attention Based Query-Document-Sentence Interactions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Pankaj</namePart>
<namePart type="family">Gupta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yatin</namePart>
<namePart type="family">Chaudhary</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hinrich</namePart>
<namePart type="family">Schütze</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 5th Workshop on BioNLP Open Shared Tasks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kim</namePart>
<namePart type="family">Jin-Dong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nédellec</namePart>
<namePart type="family">Claire</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bossy</namePart>
<namePart type="family">Robert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Deléger</namePart>
<namePart type="family">Louise</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents our system details and results of participation in the RDoC Tasks of BioNLP-OST 2019. Research Domain Criteria (RDoC) construct is a multi-dimensional and broad framework to describe mental health disorders by combining knowledge from genomics to behaviour. Non-availability of RDoC labelled dataset and tedious labelling process hinders the use of RDoC framework to reach its full potential in Biomedical research community and Healthcare industry. Therefore, Task-1 aims at retrieval and ranking of PubMed abstracts relevant to a given RDoC construct and Task-2 aims at extraction of the most relevant sentence from a given PubMed abstract. We investigate (1) attention based supervised neural topic model and SVM for retrieval and ranking of PubMed abstracts and, further utilize BM25 and other relevance measures for re-ranking, (2) supervised and unsupervised sentence ranking models utilizing multi-view representations comprising of query-aware attention-based sentence representation (QAR), bag-of-words (BoW) and TF-IDF. Our best systems achieved 1st rank and scored 0.86 mAP and 0.58 macro average accuracy in Task-1 and Task-2 respectively.</abstract>
<identifier type="citekey">gupta-etal-2019-bionlp</identifier>
<identifier type="doi">10.18653/v1/D19-5730</identifier>
<location>
<url>https://aclanthology.org/D19-5730/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>227</start>
<end>236</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T BioNLP-OST 2019 RDoC Tasks: Multi-grain Neural Relevance Ranking Using Topics and Attention Based Query-Document-Sentence Interactions
%A Gupta, Pankaj
%A Chaudhary, Yatin
%A Schütze, Hinrich
%Y Jin-Dong, Kim
%Y Claire, Nédellec
%Y Robert, Bossy
%Y Louise, Deléger
%S Proceedings of the 5th Workshop on BioNLP Open Shared Tasks
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F gupta-etal-2019-bionlp
%X This paper presents our system details and results of participation in the RDoC Tasks of BioNLP-OST 2019. Research Domain Criteria (RDoC) construct is a multi-dimensional and broad framework to describe mental health disorders by combining knowledge from genomics to behaviour. Non-availability of RDoC labelled dataset and tedious labelling process hinders the use of RDoC framework to reach its full potential in Biomedical research community and Healthcare industry. Therefore, Task-1 aims at retrieval and ranking of PubMed abstracts relevant to a given RDoC construct and Task-2 aims at extraction of the most relevant sentence from a given PubMed abstract. We investigate (1) attention based supervised neural topic model and SVM for retrieval and ranking of PubMed abstracts and, further utilize BM25 and other relevance measures for re-ranking, (2) supervised and unsupervised sentence ranking models utilizing multi-view representations comprising of query-aware attention-based sentence representation (QAR), bag-of-words (BoW) and TF-IDF. Our best systems achieved 1st rank and scored 0.86 mAP and 0.58 macro average accuracy in Task-1 and Task-2 respectively.
%R 10.18653/v1/D19-5730
%U https://aclanthology.org/D19-5730/
%U https://doi.org/10.18653/v1/D19-5730
%P 227-236
Markdown (Informal)
[BioNLP-OST 2019 RDoC Tasks: Multi-grain Neural Relevance Ranking Using Topics and Attention Based Query-Document-Sentence Interactions](https://aclanthology.org/D19-5730/) (Gupta et al., BioNLP 2019)
ACL