@inproceedings{frermann-2019-extractive,
title = "Extractive {N}arrative{QA} with Heuristic Pre-Training",
author = "Frermann, Lea",
editor = "Fisch, Adam and
Talmor, Alon and
Jia, Robin and
Seo, Minjoon and
Choi, Eunsol and
Chen, Danqi",
booktitle = "Proceedings of the 2nd Workshop on Machine Reading for Question Answering",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-5823",
doi = "10.18653/v1/D19-5823",
pages = "172--182",
abstract = "Although advances in neural architectures for NLP problems as well as unsupervised pre-training have led to substantial improvements on question answering and natural language inference, understanding of and reasoning over long texts still poses a substantial challenge. Here, we consider the task of question answering from full narratives (e.g., books or movie scripts), or their summaries, tackling the NarrativeQA challenge (NQA; Kocisky et al. (2018)). We introduce a heuristic extractive version of the data set, which allows us to approach the more feasible problem of answer extraction (rather than generation). We train systems for passage retrieval as well as answer span prediction using this data set. We use pre-trained BERT embeddings for injecting prior knowledge into our system. We show that our setup leads to state of the art performance on summary-level QA. On QA from full narratives, our model outperforms previous models on the METEOR metric. We analyze the relative contributions of pre-trained embeddings and the extractive training paradigm, and provide a detailed error analysis.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="frermann-2019-extractive">
<titleInfo>
<title>Extractive NarrativeQA with Heuristic Pre-Training</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lea</namePart>
<namePart type="family">Frermann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2nd Workshop on Machine Reading for Question Answering</title>
</titleInfo>
<name type="personal">
<namePart type="given">Adam</namePart>
<namePart type="family">Fisch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alon</namePart>
<namePart type="family">Talmor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Robin</namePart>
<namePart type="family">Jia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Minjoon</namePart>
<namePart type="family">Seo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eunsol</namePart>
<namePart type="family">Choi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Danqi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Although advances in neural architectures for NLP problems as well as unsupervised pre-training have led to substantial improvements on question answering and natural language inference, understanding of and reasoning over long texts still poses a substantial challenge. Here, we consider the task of question answering from full narratives (e.g., books or movie scripts), or their summaries, tackling the NarrativeQA challenge (NQA; Kocisky et al. (2018)). We introduce a heuristic extractive version of the data set, which allows us to approach the more feasible problem of answer extraction (rather than generation). We train systems for passage retrieval as well as answer span prediction using this data set. We use pre-trained BERT embeddings for injecting prior knowledge into our system. We show that our setup leads to state of the art performance on summary-level QA. On QA from full narratives, our model outperforms previous models on the METEOR metric. We analyze the relative contributions of pre-trained embeddings and the extractive training paradigm, and provide a detailed error analysis.</abstract>
<identifier type="citekey">frermann-2019-extractive</identifier>
<identifier type="doi">10.18653/v1/D19-5823</identifier>
<location>
<url>https://aclanthology.org/D19-5823</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>172</start>
<end>182</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Extractive NarrativeQA with Heuristic Pre-Training
%A Frermann, Lea
%Y Fisch, Adam
%Y Talmor, Alon
%Y Jia, Robin
%Y Seo, Minjoon
%Y Choi, Eunsol
%Y Chen, Danqi
%S Proceedings of the 2nd Workshop on Machine Reading for Question Answering
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F frermann-2019-extractive
%X Although advances in neural architectures for NLP problems as well as unsupervised pre-training have led to substantial improvements on question answering and natural language inference, understanding of and reasoning over long texts still poses a substantial challenge. Here, we consider the task of question answering from full narratives (e.g., books or movie scripts), or their summaries, tackling the NarrativeQA challenge (NQA; Kocisky et al. (2018)). We introduce a heuristic extractive version of the data set, which allows us to approach the more feasible problem of answer extraction (rather than generation). We train systems for passage retrieval as well as answer span prediction using this data set. We use pre-trained BERT embeddings for injecting prior knowledge into our system. We show that our setup leads to state of the art performance on summary-level QA. On QA from full narratives, our model outperforms previous models on the METEOR metric. We analyze the relative contributions of pre-trained embeddings and the extractive training paradigm, and provide a detailed error analysis.
%R 10.18653/v1/D19-5823
%U https://aclanthology.org/D19-5823
%U https://doi.org/10.18653/v1/D19-5823
%P 172-182
Markdown (Informal)
[Extractive NarrativeQA with Heuristic Pre-Training](https://aclanthology.org/D19-5823) (Frermann, 2019)
ACL