@inproceedings{osama-etal-2019-question,
    title = "Question Answering Using Hierarchical Attention on Top of {BERT} Features",
    author = "Osama, Reham  and
      El-Makky, Nagwa  and
      Torki, Marwan",
    editor = "Fisch, Adam  and
      Talmor, Alon  and
      Jia, Robin  and
      Seo, Minjoon  and
      Choi, Eunsol  and
      Chen, Danqi",
    booktitle = "Proceedings of the 2nd Workshop on Machine Reading for Question Answering",
    month = nov,
    year = "2019",
    address = "Hong Kong, China",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/D19-5825/",
    doi = "10.18653/v1/D19-5825",
    pages = "191--195",
    abstract = "The model submitted works as follows. When supplied a question and a passage it makes use of the BERT embedding along with the hierarchical attention model which consists of 2 parts, the co-attention and the self-attention, to locate a continuous span of the passage that is the answer to the question."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="osama-etal-2019-question">
    <titleInfo>
        <title>Question Answering Using Hierarchical Attention on Top of BERT Features</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Reham</namePart>
        <namePart type="family">Osama</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Nagwa</namePart>
        <namePart type="family">El-Makky</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Marwan</namePart>
        <namePart type="family">Torki</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2019-11</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 2nd Workshop on Machine Reading for Question Answering</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Adam</namePart>
            <namePart type="family">Fisch</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Alon</namePart>
            <namePart type="family">Talmor</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Robin</namePart>
            <namePart type="family">Jia</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Minjoon</namePart>
            <namePart type="family">Seo</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Eunsol</namePart>
            <namePart type="family">Choi</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Danqi</namePart>
            <namePart type="family">Chen</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Hong Kong, China</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>The model submitted works as follows. When supplied a question and a passage it makes use of the BERT embedding along with the hierarchical attention model which consists of 2 parts, the co-attention and the self-attention, to locate a continuous span of the passage that is the answer to the question.</abstract>
    <identifier type="citekey">osama-etal-2019-question</identifier>
    <identifier type="doi">10.18653/v1/D19-5825</identifier>
    <location>
        <url>https://aclanthology.org/D19-5825/</url>
    </location>
    <part>
        <date>2019-11</date>
        <extent unit="page">
            <start>191</start>
            <end>195</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Question Answering Using Hierarchical Attention on Top of BERT Features
%A Osama, Reham
%A El-Makky, Nagwa
%A Torki, Marwan
%Y Fisch, Adam
%Y Talmor, Alon
%Y Jia, Robin
%Y Seo, Minjoon
%Y Choi, Eunsol
%Y Chen, Danqi
%S Proceedings of the 2nd Workshop on Machine Reading for Question Answering
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F osama-etal-2019-question
%X The model submitted works as follows. When supplied a question and a passage it makes use of the BERT embedding along with the hierarchical attention model which consists of 2 parts, the co-attention and the self-attention, to locate a continuous span of the passage that is the answer to the question.
%R 10.18653/v1/D19-5825
%U https://aclanthology.org/D19-5825/
%U https://doi.org/10.18653/v1/D19-5825
%P 191-195
Markdown (Informal)
[Question Answering Using Hierarchical Attention on Top of BERT Features](https://aclanthology.org/D19-5825/) (Osama et al., 2019)
ACL