@inproceedings{nakashole-2019-commonsense,
title = "Commonsense about Human Senses: Labeled Data Collection Processes",
author = "Nakashole, Ndapa",
editor = "Ostermann, Simon and
Zhang, Sheng and
Roth, Michael and
Clark, Peter",
booktitle = "Proceedings of the First Workshop on Commonsense Inference in Natural Language Processing",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-6005",
doi = "10.18653/v1/D19-6005",
pages = "43--52",
abstract = "We consider the problem of extracting from text commonsense knowledge pertaining to human senses such as sound and smell. First, we consider the problem of recognizing mentions of human senses in text. Our contribution is a method for acquiring labeled data. Experiments show the effectiveness of our proposed data labeling approach when used with standard machine learning models on the task of sense recognition in text. Second, we propose to extract novel, common sense relationships pertaining to sense perception concepts. Our contribution is a process for generating labeled data by leveraging large corpora and crowdsourcing questionnaires.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nakashole-2019-commonsense">
<titleInfo>
<title>Commonsense about Human Senses: Labeled Data Collection Processes</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ndapa</namePart>
<namePart type="family">Nakashole</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Commonsense Inference in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Ostermann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sheng</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Roth</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peter</namePart>
<namePart type="family">Clark</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We consider the problem of extracting from text commonsense knowledge pertaining to human senses such as sound and smell. First, we consider the problem of recognizing mentions of human senses in text. Our contribution is a method for acquiring labeled data. Experiments show the effectiveness of our proposed data labeling approach when used with standard machine learning models on the task of sense recognition in text. Second, we propose to extract novel, common sense relationships pertaining to sense perception concepts. Our contribution is a process for generating labeled data by leveraging large corpora and crowdsourcing questionnaires.</abstract>
<identifier type="citekey">nakashole-2019-commonsense</identifier>
<identifier type="doi">10.18653/v1/D19-6005</identifier>
<location>
<url>https://aclanthology.org/D19-6005</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>43</start>
<end>52</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Commonsense about Human Senses: Labeled Data Collection Processes
%A Nakashole, Ndapa
%Y Ostermann, Simon
%Y Zhang, Sheng
%Y Roth, Michael
%Y Clark, Peter
%S Proceedings of the First Workshop on Commonsense Inference in Natural Language Processing
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F nakashole-2019-commonsense
%X We consider the problem of extracting from text commonsense knowledge pertaining to human senses such as sound and smell. First, we consider the problem of recognizing mentions of human senses in text. Our contribution is a method for acquiring labeled data. Experiments show the effectiveness of our proposed data labeling approach when used with standard machine learning models on the task of sense recognition in text. Second, we propose to extract novel, common sense relationships pertaining to sense perception concepts. Our contribution is a process for generating labeled data by leveraging large corpora and crowdsourcing questionnaires.
%R 10.18653/v1/D19-6005
%U https://aclanthology.org/D19-6005
%U https://doi.org/10.18653/v1/D19-6005
%P 43-52
Markdown (Informal)
[Commonsense about Human Senses: Labeled Data Collection Processes](https://aclanthology.org/D19-6005) (Nakashole, 2019)
ACL