@inproceedings{thiem-jansen-2019-extracting,
title = "Extracting Common Inference Patterns from Semi-Structured Explanations",
author = "Thiem, Sebastian and
Jansen, Peter",
editor = "Ostermann, Simon and
Zhang, Sheng and
Roth, Michael and
Clark, Peter",
booktitle = "Proceedings of the First Workshop on Commonsense Inference in Natural Language Processing",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-6006/",
doi = "10.18653/v1/D19-6006",
pages = "53--65",
abstract = "Complex questions often require combining multiple facts to correctly answer, particularly when generating detailed explanations for why those answers are correct. Combining multiple facts to answer questions is often modeled as a {\textquotedblleft}multi-hop{\textquotedblright} graph traversal problem, where a given solver must find a series of interconnected facts in a knowledge graph that, taken together, answer the question and explain the reasoning behind that answer. Multi-hop inference currently suffers from semantic drift, or the tendency for chains of reasoning to {\textquotedblleft}drift{\textquotedblright}' to unrelated topics, and this semantic drift greatly limits the number of facts that can be combined in both free text or knowledge base inference. In this work we present our effort to mitigate semantic drift by extracting large high-confidence multi-hop inference patterns, generated by abstracting large-scale explanatory structure from a corpus of detailed explanations. We represent these inference patterns as sets of generalized constraints over sentences represented as rows in a knowledge base of semi-structured tables. We present a prototype tool for identifying common inference patterns from corpora of semi-structured explanations, and use it to successfully extract 67 inference patterns from a {\textquotedblleft}matter{\textquotedblright} subset of standardized elementary science exam questions that span scientific and world knowledge."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="thiem-jansen-2019-extracting">
<titleInfo>
<title>Extracting Common Inference Patterns from Semi-Structured Explanations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Thiem</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peter</namePart>
<namePart type="family">Jansen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Commonsense Inference in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Ostermann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sheng</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Roth</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peter</namePart>
<namePart type="family">Clark</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Complex questions often require combining multiple facts to correctly answer, particularly when generating detailed explanations for why those answers are correct. Combining multiple facts to answer questions is often modeled as a “multi-hop” graph traversal problem, where a given solver must find a series of interconnected facts in a knowledge graph that, taken together, answer the question and explain the reasoning behind that answer. Multi-hop inference currently suffers from semantic drift, or the tendency for chains of reasoning to “drift”’ to unrelated topics, and this semantic drift greatly limits the number of facts that can be combined in both free text or knowledge base inference. In this work we present our effort to mitigate semantic drift by extracting large high-confidence multi-hop inference patterns, generated by abstracting large-scale explanatory structure from a corpus of detailed explanations. We represent these inference patterns as sets of generalized constraints over sentences represented as rows in a knowledge base of semi-structured tables. We present a prototype tool for identifying common inference patterns from corpora of semi-structured explanations, and use it to successfully extract 67 inference patterns from a “matter” subset of standardized elementary science exam questions that span scientific and world knowledge.</abstract>
<identifier type="citekey">thiem-jansen-2019-extracting</identifier>
<identifier type="doi">10.18653/v1/D19-6006</identifier>
<location>
<url>https://aclanthology.org/D19-6006/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>53</start>
<end>65</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Extracting Common Inference Patterns from Semi-Structured Explanations
%A Thiem, Sebastian
%A Jansen, Peter
%Y Ostermann, Simon
%Y Zhang, Sheng
%Y Roth, Michael
%Y Clark, Peter
%S Proceedings of the First Workshop on Commonsense Inference in Natural Language Processing
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F thiem-jansen-2019-extracting
%X Complex questions often require combining multiple facts to correctly answer, particularly when generating detailed explanations for why those answers are correct. Combining multiple facts to answer questions is often modeled as a “multi-hop” graph traversal problem, where a given solver must find a series of interconnected facts in a knowledge graph that, taken together, answer the question and explain the reasoning behind that answer. Multi-hop inference currently suffers from semantic drift, or the tendency for chains of reasoning to “drift”’ to unrelated topics, and this semantic drift greatly limits the number of facts that can be combined in both free text or knowledge base inference. In this work we present our effort to mitigate semantic drift by extracting large high-confidence multi-hop inference patterns, generated by abstracting large-scale explanatory structure from a corpus of detailed explanations. We represent these inference patterns as sets of generalized constraints over sentences represented as rows in a knowledge base of semi-structured tables. We present a prototype tool for identifying common inference patterns from corpora of semi-structured explanations, and use it to successfully extract 67 inference patterns from a “matter” subset of standardized elementary science exam questions that span scientific and world knowledge.
%R 10.18653/v1/D19-6006
%U https://aclanthology.org/D19-6006/
%U https://doi.org/10.18653/v1/D19-6006
%P 53-65
Markdown (Informal)
[Extracting Common Inference Patterns from Semi-Structured Explanations](https://aclanthology.org/D19-6006/) (Thiem & Jansen, 2019)
ACL