@inproceedings{newman-griffis-fosler-lussier-2019-writing,
title = "Writing habits and telltale neighbors: analyzing clinical concept usage patterns with sublanguage embeddings",
author = "Newman-Griffis, Denis and
Fosler-Lussier, Eric",
editor = "Holderness, Eben and
Jimeno Yepes, Antonio and
Lavelli, Alberto and
Minard, Anne-Lyse and
Pustejovsky, James and
Rinaldi, Fabio",
booktitle = "Proceedings of the Tenth International Workshop on Health Text Mining and Information Analysis (LOUHI 2019)",
month = nov,
year = "2019",
address = "Hong Kong",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-6218/",
doi = "10.18653/v1/D19-6218",
pages = "146--156",
abstract = "Natural language processing techniques are being applied to increasingly diverse types of electronic health records, and can benefit from in-depth understanding of the distinguishing characteristics of medical document types. We present a method for characterizing the usage patterns of clinical concepts among different document types, in order to capture semantic differences beyond the lexical level. By training concept embeddings on clinical documents of different types and measuring the differences in their nearest neighborhood structures, we are able to measure divergences in concept usage while correcting for noise in embedding learning. Experiments on the MIMIC-III corpus demonstrate that our approach captures clinically-relevant differences in concept usage and provides an intuitive way to explore semantic characteristics of clinical document collections."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="newman-griffis-fosler-lussier-2019-writing">
<titleInfo>
<title>Writing habits and telltale neighbors: analyzing clinical concept usage patterns with sublanguage embeddings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Denis</namePart>
<namePart type="family">Newman-Griffis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eric</namePart>
<namePart type="family">Fosler-Lussier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Tenth International Workshop on Health Text Mining and Information Analysis (LOUHI 2019)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Eben</namePart>
<namePart type="family">Holderness</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antonio</namePart>
<namePart type="family">Jimeno Yepes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alberto</namePart>
<namePart type="family">Lavelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anne-Lyse</namePart>
<namePart type="family">Minard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Pustejovsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fabio</namePart>
<namePart type="family">Rinaldi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Natural language processing techniques are being applied to increasingly diverse types of electronic health records, and can benefit from in-depth understanding of the distinguishing characteristics of medical document types. We present a method for characterizing the usage patterns of clinical concepts among different document types, in order to capture semantic differences beyond the lexical level. By training concept embeddings on clinical documents of different types and measuring the differences in their nearest neighborhood structures, we are able to measure divergences in concept usage while correcting for noise in embedding learning. Experiments on the MIMIC-III corpus demonstrate that our approach captures clinically-relevant differences in concept usage and provides an intuitive way to explore semantic characteristics of clinical document collections.</abstract>
<identifier type="citekey">newman-griffis-fosler-lussier-2019-writing</identifier>
<identifier type="doi">10.18653/v1/D19-6218</identifier>
<location>
<url>https://aclanthology.org/D19-6218/</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>146</start>
<end>156</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Writing habits and telltale neighbors: analyzing clinical concept usage patterns with sublanguage embeddings
%A Newman-Griffis, Denis
%A Fosler-Lussier, Eric
%Y Holderness, Eben
%Y Jimeno Yepes, Antonio
%Y Lavelli, Alberto
%Y Minard, Anne-Lyse
%Y Pustejovsky, James
%Y Rinaldi, Fabio
%S Proceedings of the Tenth International Workshop on Health Text Mining and Information Analysis (LOUHI 2019)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong
%F newman-griffis-fosler-lussier-2019-writing
%X Natural language processing techniques are being applied to increasingly diverse types of electronic health records, and can benefit from in-depth understanding of the distinguishing characteristics of medical document types. We present a method for characterizing the usage patterns of clinical concepts among different document types, in order to capture semantic differences beyond the lexical level. By training concept embeddings on clinical documents of different types and measuring the differences in their nearest neighborhood structures, we are able to measure divergences in concept usage while correcting for noise in embedding learning. Experiments on the MIMIC-III corpus demonstrate that our approach captures clinically-relevant differences in concept usage and provides an intuitive way to explore semantic characteristics of clinical document collections.
%R 10.18653/v1/D19-6218
%U https://aclanthology.org/D19-6218/
%U https://doi.org/10.18653/v1/D19-6218
%P 146-156
Markdown (Informal)
[Writing habits and telltale neighbors: analyzing clinical concept usage patterns with sublanguage embeddings](https://aclanthology.org/D19-6218/) (Newman-Griffis & Fosler-Lussier, Louhi 2019)
ACL