
Development of Corpora within the CLaRK System
The BulTreeBank Project Experience

Kiril Simov, Alexander Simov, Milen Kouylekov,
Krasimira Ivanova, Ilko Grigorov, Hristo Ganev

BulTreeBank Project
Linguistic Modelling Laboratory - CLPPI, BAS, Sofia, Bulgaria

kivs@bultreebank.org , adis_78@dir.bg, mkouylekov@dir.bg ,
krassy_v@abv.bg , ilko_grigorov@yahoo.com, hristo_ganev79@yahoo.com

Abstract

CLaRK is an XML-based software sys-
tem for corpora development. It in-
corporates several technologies: XML
technology; Un i code ; Regular Cascaded
Grammars; Constraints over XML Doc-
uments. The basic components of the
system are: a tagger, a concordancer, an
extractor, a grammar processor, a con-
straint engine.

1 Introduction

The CLaRK System is an XML-based system for
corpora development — see (Simov et. al., 2001).
The main aim behind the design of the system
is the minimization of human intervention during
the creation of language resources. It incorporates
the following technologies: XML technology; Uni-
code; Regular Cascaded Grammars; Constraints
over XML Documents.

For document management, storing and query-
ing, we chose the XML technology because of its
popularity and its ease of understanding. The core
of CLaRK is an Unicode XML Editor, which is the
main interface to the system. Besides the XML
language itself, we implemented an XPath lan-
guage for navigation in documents and an XSLT
engine for transformation of XML documents.
The XSL transformations can be applied locally
to an XML element and its content.

For multilingual processing tasks, CLaRK is
based on an Unicode encoding of the text inside
the system. There is a mechanism for the creation

of a hierarchy of tokenisers. They can be attached
to the elements in the DTDs and in this way there
are different tokenisers for different parts of the
documents.

The basic mechanism of CLaRK for linguistic
processing of text corpora is the cascaded regu-
lar grammar processor. The main challenge to the
grammars in question is how to apply them on
XML encoding of the linguistic information. The
system offers a solution using the XPath language
for constructing the input word to the grammar and
an XML encoding of the categories of the recog-
nised words.

Several mechanisms for imposing constraints
over XML documents are available. The con-
straints cannot be stated within the standard XML
technology. The constraints are used in two mo-
des: checking the validity of a document regard-
ing a set of constraints; supporting the linguist in
his/her work during the building of a corpus. The
first mode allows the creation of constraints for
the validation of a corpus according to given re-
quirements. The second mode helps the underly-
ing strategy for minimisation of the human labour.

We envisage several uses for our system: Cor-
pora markup. Here users work with the XML
tools of the system in order to mark-up texts
with respect to an XML DTD. This task usually
requires an enormous human effort and handles
both - the mark-up itself and its validation after-
wards. Using the available grammar resources,
such as morphological analyzers or partial pars-
ing, the system can state local constraints reflect-
ing the characteristics of a particular kind of texts

243



or mark-up. Dictionary compilation for human
users. The system supports the creation of actual
lexical entries, whose structure can be defined via
an appropriate DTD. The XML tools can be used
also for corpus investigation that provides appro-
priate examples of the word usage in the avail-
able corpora. The constraints, incorporated in the
system, can be used for writing a grammar over
the sublanguages of the definitions, for imposing
constraints over elements of lexical entries and
the dictionary as a whole. Corpora investigation.
The CLaRK System offers a rich set of tools for
searching over tokens and mark-up in XML cor-
pora, including cascaded grammars, XPath lan-
guage. Their combinations are used for tasks, such
as: extraction of elements from a corpus - for ex-
ample, extraction of all NPs in the corpus; concor-
dance - for example, viewing all NPs in the context
of their use.

The first version of the CLaRK System was re-
leased on 20.05.2002 and it is freely available at
the site of the BulTreeBank Project l . It is actively
used within the BulTreeBank Project for mainte-
nance of language resources of different kinds —
text archive, morphologically annotated corpora,
syntactic trees and lexicons. It is implemented
in Java and was tested under MS Windows and
Linux.

The paper describes three applications of the
CLaRK system, related to corpora development.
These includes: chunk grammars, disambiguation
and evaluation (precision and recall). This paper
does not discuss related work due to space limita-
tions.

2 Cascaded Regular Grammars

The regular grammars in CLaRK System work
over token and element values generated from the
content of an XML document and they incorporate
their results back in the document as XML mark-
up. The tokens are determined by the correspond-
ing tokenizer. The element values are defined with
the help of XPath expressions, which determine
the important information for each element. In the
grammars, the token and element values are de-
scribed by token and element descriptions. These

I http://www.BulTreeBank.org/cla •k/index.html

descriptions could contain wildcard symbols and
variables. The variables are shared among the to-
ken descriptions within a regular expression and
can be used for the treatment of phenomena like
agreement. The grammars are applied in cascaded
manner. The general idea underlying the cascaded
application is that there is a set of regular gram-
mars. The grammars in the set are in particular
order. The input of a given grammar in the set
is either the input string, if the grammar is first
in the order, or the output string of the previous
grammar. The evaluation of the regular expres-
sions that defines the rules, can be guided by the
user. We allow the following strategies for evalua-
tion: 'longest match', 'shortest match' and several
backtracking strategies.

Here is an example, which demonstrates the
cascaded application of two grammars. The first
grammar consists of the following rule (based on
a grammar developed by Petya Osenova for Bul-
garian noun phrases):

<np aa="NPns">\w</np> ->
<("An#"I"Pd@@@sn")>,
<("Pneo-sn"I"Pfeo-sn")>

Here the token description2 " An #" matches all
morphosyntactic tags for adjectives of neuter gen-
der, the token description "P d@ @ @sn" matches
all morphosyntactic tags for demonstrative pro-
nouns of neuter gender, singular, the description
"Pneo-sn" is a morphosyntactic tag for the neg-
ative pronoun, neuter gender, singular, and the de-
scription "Pfeo—sn" is a morphosyntactic tag
for the indefinite pronoun, neuter gender, singu-
lar. The brackets < and > delimits the element
descriptions within the rule. This rule recognizes
as a noun phrase each sequence of two elements
where the first element has an element value corre-
sponding to an adjective or demonstrative pronoun
with appropriate grammatical features, followed
by an element with element value corresponding
to a negative or an indefinite pronoun. Notice the
attribute aa of the rule's category. It represents
the information that the resulting noun phrase is
singular, neuter gender. Let us now suppose that
the next grammar is for determination of preposi-
tional phrases and it is defined as follows:

<Pp>AW</p1D> -> ‹"R"›<"N#"›

2Here # and @ are wildcard symbols.

244



where " R" is the morpho syntactic tag for pre-
positions. Let us trace the application of the two
grammars one after another on the following XML
element:

<text>
<w aa="R">s</w>
<w aa="Ansd">golyamoto</w>
<w aa="Pneo-sn">nisto</w>

</text>

First, we define the element value for the ele-
ments with tag w by the XPath expression: "at-
tribute::aa". Then the cascaded regular grammar
processor calculates the input word for the first
grammar: " <" " R" ">" "<" "Ansd" ">"

"Pneo-sn" ">". Then the first grammar is ap-
plied on this input words and it recognizes the last
two elements as a noun phrase. This results in two
actions: first, the markup of the rule is incorpo-
rated into the original XML document:

<text>
<w aa="R">s</w>
<np aa="NPns"›

<w aa="Ansd">golyamoto</w>
<w aa="Pneo-sn">nisto</w>

</np>
</text>

Second, the element value for the new element
<np> is calculated and it is substituted in the input
word of the first grammar and in this way the input
word for the second grammar is constructed: " < "
"R" ">" "<" "NPns" ">". Then the second
grammar is applied on this word and the result is
incorporated in the XML document:

<text>

<pp>
<w aa="R">s</w>
<np aa="NPns"›

<w aa="Ansdn>golyamoto<N>
<w aa="Pneo-sn">nisto</w>

</np>

</PP>
</text>

Because the cascaded grammar consists of only
these two grammars, the input word for the second
grammar is not modified, but simply deleted.

The following rule demonstrates the usage of
variables in a rule:

<np aa="NP&G&N">\w</np> ->
(<"A&G&Nd">,<"A&G&Ni">*)?<"N@&G&Ni">

Here &G and &N are variables for one sym-
bol only and ensure the agreement on gender

and number. Additionally, there are variables for
strings (denoted as & &N). For each variable a set
of constraints can be imposed via regular expres-
sions3 . Note that the variables are used also within
the XML mark-up and their values will be incor-
porated within the document when this rule recog-
nizes some word in the document.

3 Using Constraints for Manual and
Automatic Disambiguation

Here we demonstrate the constraints of type
"Some Children". This kind of constraints deals
with the content of some elements. They deter-
mine the existence of certain values within the
content of these elements. A value can be a token
or an XML mark-up and the actual value for an el-
ement can be determined by the context. Such a
constraint works in the following way: first it de-
termines to which elements in the document it is
applicable (the conditions over the context of the
nodes are expressed by an XPath expression), then
for each such element in turn it determines which
values (usually they also are pointed by an XPath
expression) are allowed and checks whether in the
content of the element some of these values are
presented as a token or an XML mark-up. If there
is such a value, then the constraint chooses the
next element. If there is no such a value, then the
constraint offers to the user a possibility to choose
one of the allowed values for the element and the
selected value is added to the content.

Within BulTreeBank, we use these constraints
for manual disambiguation of morpho-syntactic
tags of wordforms in the text. For each word-
form we encode the appropriate morpho-syntactic
information from the dictionary as two elements:
<aa> element, which contains a list of morpho-
syntactic tags for the wordform separated by a
semicolon, and <t a> element, which contains the
actual morpho-syntactic tag for this use of the
wordform. The value of <ta> element has to
be among the values in the list presented in the
element <aa> for the same wordform. "Some
Children" constraints are very appropriate in this
case. Using different conditions and filters on the
values, we implemented and used more than 70

3 1n future work we envisage more complicated constraints
to be implemented.

245



constraints during the manual disambiguation of
wordforms in the "golden standard" of the project.
It is important to be mentioned that when the con-
text determines only one possible value, it is added
automatically to the content of <t a> element and
thus the constraint becomes a rule.

Another feature of the constraints is the usage
of variables with the XPath expressions and the
possibility for work with more than one document.
This allows the lexicons used for annotation to be
saved in a separate XML document and to be ac-
cessed when it is necessary.

4 Evaluation: Precision and Recall

At the moment the CLaRK system does not have a
separate tool for comparing two XML documents,
which to be used for calculation of the two mea-
sures — precision and recall. However, one could
simulate it by using the present tools of the sys-
tem. Let us have developed an NP chunk gram-
mar and additionally, a manually annotated cor-
pus. Let the NPs in the corpus have an attribute
type with value " m" . In addition, we run the NP
chunk grammar over a clean version of the corpus
and the NPs in the result have the attribute type

with value " g " . In order to evaluate the precision
and recall of the grammar over the annotated cor-
pus, we have to do the following:

1. First, we extract the NPs, which are presented
within the corpus and in the output from the
application of the grammar. Then we join the
two sets of NPs in one XML document. With
a perfect grammar, for each NP marked with
value "m" there should be one NP marked
with value " g " and vice versa, but usually
this is not the case.

2. In order to find the discrepancies, we remove
the NPs in pairs on the basis of the equal
content. The only difference is that one NP
in the pair has value "m" and the other one
has value " g " for the attribute type. In the
end, within the document, the NPs with at-
tribute t ype= " g " are those NPs that are rec-
ognized by the grammar, but there is no cor-
responding NPs in the corpus and similarly,
the NPs with attribute t ype= "m" are those

NPs that are in the corpus, but they are not
recognized by the grammar.

3. Then we count the two kinds of NPs, which
have left unmatched in the document. We use
the figures (together with the number of all
NPs in the corpus) in order to calculate the
precision and recall for the grammar.

Although this procedure is precise with respect
to the internal structure of the compared sub-trees,
it is not sensitive to the context of appearance of
these sub-trees4 . For example, one NP in the cor-
pus can match a NP in the grammar result even
if they are in quite different contexts. In order to
solve the problem, we add to each leaf element in
the XML documents unique identifiers that are the
same for the corpus and the result from the appli-
cation of the grammar. In this way we compare the
NPs (in our case) on the basis of their content and
also their position in the linear order of the words
in the sentences.

5 Conclusion

The demonstration of CLaRK will show the ba-
sic tools of the system in the process of creating a
linguistically interpreted text corpus of Bulgarian.
Future directions of development are: implement-
ing more of XML technologies (XML Schema,
XPointer, XLink), implementation of a macro lan-
guage, database support.

Acknowledgements

The work reported here is done within the Bul-
TreeBank project. The project is funded by the
Volkswagen Stiftung, Federal Republic of Ger-
many under the Programme "Cooperation with
Natural and Engineering Scientists in Central and
Eastern Europe" contract 1176 887.

References

Kiril Simov, Zdravko Peev, Milen Kouylekov, Alexan-
der Simov, Mann Dimitrov, Atanas Kiryakov. 2001.
CLaRK - an XML-based System for Corpora Devel-
opment. In: Proc. of the Corpus Linguistics 2001
Conference, pages: 558-560.

4We would like to thank Csaba Oravecz and Minas Varadi
for pointing us to this problem.

246


	Page 1
	Page 2
	Page 3
	Page 4

