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Abstract

In this paper, we present an integrated
model of the two central tasks of dialog
management: interpreting user actions and
generating system actions. We model the
interpretation task as a classication prob-
lem and the generation task as a predic-
tion problem. These two tasks are inter-
leaved in an incremental parsing-based di-
alog model. We compare three alterna-
tive parsing methods for this dialog model
using a corpus of human-human spoken
dialog from a catalog ordering domain
that has been annotated for dialog acts
and task/subtask information. We contrast
the amount of context provided by each
method and its impact on performance.

1 Introduction

Corpora of spoken dialog are now widely avail-
able, and frequently come with annotations for
tasks/games, dialog acts, named entities and ele-
ments of syntactic structure. These types of infor-
mation provide rich clues for building dialog mod-
els (Grosz and Sidner, 1986). Dialog models can
be built ofine (for dialog mining and summariza-
tion), or online (for dialog management).

A dialog manager is the component of a dia-
log system that is responsible for interpreting user
actions in the dialog context, and for generating
system actions. Needless to say, a dialog manager
operates incrementally as the dialog progresses. In
typical commercial dialog systems, the interpre-
tation and generation processes operate indepen-
dently of each other, with only a small amount of
shared context. By contrast, in this paper we de-
scribe a dialog model that (1) tightly integrates in-
terpretation and generation, (2) makes explicit the
type and amount of shared context, (3) includes
the task structure of the dialog in the context, (4)
can be trained from dialog data, and (5) runs in-
crementally, parsing the dialog as it occurs and in-
terleaving generation and interpretation.

At the core of our model is a parser that in-
crementally builds the dialog task structure as the

dialog progresses. In this paper, we experiment
with three different incremental tree-based parsing
methods. We compare these methods using a cor-
pus of human-human spoken dialogs in a catalog
ordering domain that has been annotated for dialog
acts and task/subtask information. We show that
all these methods outperform a baseline method
for recovering the dialog structure.

The rest of this paper is structured as follows:
In Section 2, we review related work. In Sec-
tion 3, we present our view of the structure of task-
oriented human-human dialogs. In Section 4, we
present the parsing approaches included in our ex-
periments. In Section 5, we describe our data and
experiments. Finally, in Section 6, we present con-
clusions and describe our current and future work.

2 Related Work

There are two threads of research that are relevant
to our work: work on parsing (written and spoken)
discourse, and work on plan-based dialog models.

Discourse Parsing Discourse parsing is the pro-
cess of building a hierarchical model of a dis-
course from its basic elements (sentences or
clauses), as one would build a parse of a sen-
tence from its words. There has now been con-
siderable work on discourse parsing using statisti-
cal bottom-up parsing (Soricut and Marcu, 2003),
hierarchical agglomerative clustering (Sporleder
and Lascarides, 2004), parsing from lexicalized
tree-adjoining grammars (Cristea, 2000), and rule-
based approaches that use rhetorical relations and
discourse cues (Forbes et al., 2003; Polanyi et al.,
2004; LeThanh et al., 2004). With the exception of
Cristea (2000), most of this research has been lim-
ited to non-incremental parsing of textual mono-
logues where, in contrast to incremental dialog
parsing, predicting a system action is not relevant.

The work on discourse parsing that is most
similar to ours is that of Baldridge and Las-
carides (2005). They used a probabilistic head-
driven parsing method (described in (Collins,
2003)) to construct rhetorical structure trees for a
spoken dialog corpus. However, their parser was
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Figure 1: A schema of a shared plan tree for a
dialog.

not incremental; it used global features such as the
number of turn changes. Also, it focused strictly
in interpretation of input utterances; it could not
predict actions by either dialog partner.

In contrast to other work on discourse parsing,
we wish to use the parsing process directly for di-
alog management (rather than for information ex-
traction or summarization). This inuences our
approach to dialog modeling in two ways. First,
the subtask tree we build represents the functional
task structure of the dialog (rather than the rhetor-
ical structure of the dialog). Second, our dialog
parser must be entirely incremental.

Plan-Based Dialog Models Plan-based ap-
proaches to dialog modeling, like ours, operate di-
rectly on the dialog’s task structure. The process
of task-oriented dialog is treated as a special case
of AI-style plan recognition (Sidner, 1985; Litman
and Allen, 1987; Rich and Sidner, 1997; Carberry,
2001; Bohus and Rudnicky, 2003; Lochbaum,
1998). Plan-based dialog models are used for both
interpretation of user utterances and prediction of
agent actions. In addition to the hand-crafted mod-
els listed above, researchers have built stochastic
plan recognition models for interaction, includ-
ing ones based on Hidden Markov Models (Bui,
2003; Blaylock and Allen, 2006) and on proba-
bilistic context-free grammars (Alexandersson and
Reithinger, 1997; Pynadath and Wellman, 2000).

In this area, the work most closely related to
ours is that of Barrett and Weld (Barrett and Weld,
1994), who build an incremental bottom-up parser

Opening

Order Placement

Contact Info

Delivery InfoShipping Info

ClosingSummaryPayment InfoOrder Item

Figure 2: Sample output (subtask tree) from a
parse-based model for the catalog ordering do-
main.

to parse plans. Their parser, however, was not
probabilistic or targeted at dialog processing.

3 Dialog Structure

We consider a task-oriented dialog to be the re-
sult of incremental creation of a shared plan by
the participants (Lochbaum, 1998). The shared
plan is represented as a single tree T that incorpo-
rates the task/subtask structure, dialog acts, syn-
tactic structure and lexical content of the dialog,
as shown in Figure 1. A task is a sequence of sub-
tasks ST ∈ S. A subtask is a sequence of dialog
acts DA ∈ D. Each dialog act corresponds to one
clause spoken by one speaker, customer (cu) or
agent (ca) (for which we may have acoustic, lexi-
cal, syntactic and semantic representations).

Figure 2 shows the subtask tree for a sample di-
alog in our domain (catalog ordering). An order
placement task is typically composed of the se-
quence of subtasks opening, contact-information,
order-item, related-offers, summary. Subtasks can
be nested; the nesting can be as deep as ve lev-
els in our data. Most often the nesting is at the
leftmost or rightmost frontier of the subtask tree.

As the dialog proceeds, an utterance from a par-
ticipant is accommodated into the subtask tree in
an incremental manner, much like an incremen-
tal syntactic parser accommodates the next word
into a partial parse tree (Alexandersson and Rei-
thinger, 1997). An illustration of the incremental
evolution of dialog structure is shown in Figure 4.
However, while a syntactic parser processes in-
put from a single source, our dialog parser parses
user-system exchanges: user utterances are inter-
preted, while system utterances are generated. So
the steps taken by our dialog parser to incorpo-
rate an utterance into the subtask tree depend on
whether the utterance was produced by the agent
or the user (as shown in Figure 3).
User utterances Each user turn is split into
clauses (utterances). Each clause is supertagged

95



Interpretation of a user’s utterance:

DAC : dau
i = argmax

du∈D
P (du|cu

i , ST i−1
i−k , DAi−1

i−k, ci−1
i−k)

(1)

STC : stu
i = argmax

su∈S
P (su|dau

i , cu
i , ST i−1

i−k , DAi−1
i−k, ci−1

i−k)

(2)

Generation of an agent’s utterance:

STP : sta
i = argmax

sa∈S
P (sa|ST i−1

i−k , DAi−1
i−k, ci−1

i−k)

(3)

DAP : daa
i = argmax

da∈D
P (da|sta

i , ST i−1
i−k , DAi−1

i−k, ci−1
i−k)

(4)

Table 1: Equations used for modeling dialog act and sub-
task labeling of agent and user utterances. cu

i /ca
i = the

words, syntactic information and named entities associated
with the ith utterance of the dialog, spoken by user/agent
u/a. dau

i /daa
i = the dialog act of the ith utterance, spoken

by user/agent u/a. stu
i /sta

i = the subtask label of the ith ut-
terance, spoken by user/agent u/a. DAi−1

i−k represents the
dialog act tags for utterances i − 1 to i − k.

and labeled with named entities1. Interpretation of
the clause (cu

i ) involves assigning a dialog act la-
bel (dau

i ) and a subtask label (stui ). We use ST i−1
i−k ,

DAi−1
i−k, and ci−1

i−k to represent the sequence of pre-
ceeding k subtask labels, dialog act labels and
clauses respectively. The dialog act label dau

i is
determined from information about the clause and
(a kth order approximation of) the subtask tree so
far (Ti−1 = (ST i−1

i−k , DAi−1
i−k, c

i−1
i−k)), as shown in

Equation 1 (Table 1). The subtask label stui is de-
termined from information about the clause, its di-
alog act and the subtask tree so far, as shown in
Equation 2. Then, the clause is incorporated into
the subtask tree.
Agent utterances In contrast, a dialog sys-
tem starts planning an agent utterance by iden-
tifying the subtask to contribute to next, stai ,
based on the subtask tree so far (Ti−1 =
(ST i−1

i−k , DAi−1
i−k, c

i−1
i−k)), as shown in Equation 3

(Table 1) . Then, it chooses the dialog act of the
utterance, daa

i , based on the subtask tree so far and
the chosen subtask for the utterance, as shown in
Equation 4. Finally, it generates an utterance, ca

i ,
to realize its communicative intent (represented
as a subtask and dialog act pair, with associated
named entities)2.

Note that the current clause cu
i is used in the

1This results in a syntactic parse of the clause and could
be done incrementally as well.

2We do not address utterance realization in this paper.

Figure 3: Dialog management process

conditioning context of the interpretation model
(for user utterances), but the corresponding clause
for the agent utterance ca

i is to be predicted and
hence is not part of conditioning context in the
generation model.

4 Dialog Parsing

A dialog parser can produce a “shallow” or “deep”
tree structure. A shallow parse is one in which
utterances are grouped together into subtasks, but
the dominance relations among subtasks are not
tracked. We call this model a chunk-based dia-
log model (Bangalore et al., 2006). The chunk-
based model has limitations. For example, dom-
inance relations among subtasks are important
for dialog processes such as anaphora resolu-
tion (Grosz and Sidner, 1986). Also, the chunk-
based model is representationally inadequate for
center-embedded nestings of subtasks, which do
occur in our domain, although less frequently than
the more prevalent “tail-recursive” structures.

We use the term parse-based dialog model to
refer to deep parsing models for dialog which
not only segment the dialog into chunks but also
predict dominance relations among chunks. For
this paper, we experimented with three alternative
methods for building parse-based models: shift-
reduce, start-complete and connection path.
Each of these operates on the subtask tree for
the dialog incrementally, from left-to-right, with
access only to the preceding dialog context, as
shown in Figure 4. They differ in the parsing ac-
tions and the data structures used by the parser;
this has implications for robustness to errors. The
instructions to reconstruct the parse are either en-
tirely encoded in the stack (in the shift-reduce
method), or entirely in the parsing actions (in the
start-complete and connection path methods). For
each of the four types of parsing action required
to build the parse tree (see Table 1), we construct
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Figure 4: An illustration of incremental evolution of dialog structure

a feature vector containing contextual information
for the parsing action (see Section 5.1). These fea-
ture vectors and the associated parser actions are
used to train maximum entropy models (Berger et
al., 1996). These models are then used to incre-
mentally incorporate the utterances for a new di-
alog into that dialog’s subtask tree as the dialog
progresses, as shown in Figure 3.

4.1 Shift-Reduce Method

In this method, the subtask tree is recovered
through a right-branching shift-reduce parsing
process (Hall et al., 2006; Sagae and Lavie, 2006).
The parser shifts each utterance on to the stack. It
then inspects the stack and decides whether to do
one or more reduce actions that result in the cre-
ation of subtrees in the subtask tree. The parser
maintains two data structures – a stack and a tree.
The actions of the parser change the contents of
the stack and create nodes in the dialog tree struc-
ture. The actions for the parser include unary-
reduce-X, binary-reduce-X and shift, where X is
each of the non-terminals (subtask labels) in the
tree. Shift pushes a token representing the utter-
ance onto the stack; binary-reduce-X pops two to-
kens off the stack and pushes the non-terminal X;
and unary-reduce-X pops one token off the stack
and pushes the non-terminal X. Each type of re-
duce action creates a constituent X in the dialog
tree and the tree(s) associated with the reduced el-
ements as subtree(s) of X. At the end of the dialog,
the output is a binary branching subtask tree.

Consider the example subdialog A: would you
like a free magazine? U: no. The process-

ing of this dialog using our shift-reduce dialog
parser would proceed as follows: the STP model
predicts shift for sta; the DAP model predicts
YNP(Promotions) for daa; the generator outputs
would you like a free magazine?; and the parser
shifts a token representing this utterance onto the
stack. Then, the customer says no. The DAC
model classies dau as No; the STC model clas-
sies stu as shift and binary-reduce-special-offer;
and the parser shifts a token representing the ut-
terance onto the stack, before popping the top two
elements off the stack and adding the subtree for
special-order into the dialog’s subtask tree.

4.2 Start-Complete Method

In the shift-reduce method, the dialog tree is con-
structed as a side effect of the actions performed
on the stack: each reduce action on the stack in-
troduces a non-terminal in the tree. By contrast,
in the start-complete method the instructions to
build the tree are directly encoded in the parser ac-
tions. A stack is used to maintain the global parse
state. The actions the parser can take are similar
to those described in (Ratnaparkhi, 1997). The
parser must decide whether to join each new termi-
nal onto the existing left-hand edge of the tree, or
start a new subtree. The actions for the parser in-
clude start-X, n-start-X, complete-X, u-complete-
X and b-complete-X, where X is each of the non-
terminals (subtask labels) in the tree. Start-X
pushes a token representing the current utterance
onto the stack; n-start-X pushes non-terminal X
onto the stack; complete-X pushes a token repre-
senting the current utterance onto the stack, then
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pops the top two tokens off the stack and pushes
the non-terminal X; u-complete-X pops the top to-
ken off the stack and pushes the non-terminal X;
and b-complete-X pops the top two tokens off the
stack and pushes the non-terminal X. This method
produces a dialog subtask tree directly, rather than
producing an equivalent binary-branching tree.

Consider the same subdialog as before, A:
would you like a free magazine? U: no. The
processing of this dialog using our start-complete
dialog parser would proceed as follows: the STP
model predicts start-special-offer for sta; the DAP
model predicts YNP(Promotions) for daa; the gen-
erator outputs would you like a free magazine?;
and the parser shifts a token representing this ut-
terance onto the stack. Then, the customer says
no. The DAC model classies dau as No; the STC
model classies stu as complete-special-offer; and
the parser shifts a token representing the utter-
ance onto the stack, before popping the top two
elements off the stack and adding the subtree for
special-order into the dialog’s subtask tree.

4.3 Connection Path Method

In contrast to the shift-reduce and the start-
complete methods described above, the connec-
tion path method does not use a stack to track the
global state of the parse. Instead, the parser di-
rectly predicts the connection path (path from the
root to the terminal) for each utterance. The col-
lection of connection paths for all the utterances in
a dialog denes the parse tree. This encoding was
previously used for incremental sentence parsing
by (Costa et al., 2001). With this method, there
are many more choices of decision for the parser
(195 decisions for our data) compared to the shift-
reduce (32) and start-complete (82) methods.

Consider the same subdialog as before, A:
would you like a free magazine? U: no. The pro-
cessing of this dialog using our connection path
dialog parser would proceed as follows. First, the
STP model predicts S-special-offer for sta; the
DAP model predicts YNP(Promotions) for daa;
the generator outputs would you like a free mag-
azine?; and the parser adds a subtree rooted at
special-offer, with one terminal for the current ut-
terance, into the top of the subtask tree. Then,
the customer says no. The DAC model classi-
es dau as No and the STC model classies stu

as S-special-offer. Since the right frontier of the
subtask tree has a subtree matching this path, the

Type Task/subtask labels
Call-level call-forward, closing, misc-other, open-

ing, out-of-domain, sub-call
Task-level check-availability, contact-info,

delivery-info, discount, order-change,
order-item, order-problem, payment-
info, related-offer, shipping-address,
special-offer, summary

Table 2: Task/subtask labels in CHILD

Type Subtype
Ask Info
Explain Catalog, CC Related, Discount, Order Info

Order Problem, Payment Rel, Product Info
Promotions, Related Offer, Shipping

Convers- Ack, Goodbye, Hello, Help, Hold,
-ational YoureWelcome, Thanks, Yes, No, Ack,

Repeat, Not(Information)
Request Code, Order Problem, Address, Catalog,

CC Related, Change Order, Conf, Credit,
Customer Info, Info, Make Order, Name,
Order Info, Order Status, Payment Rel,
Phone Number, Product Info, Promotions,
Shipping, Store Info

YNQ Address, Email, Info, Order Info,
Order Status,Promotions, Related Offer

Table 3: Dialog act labels in CHILD

parser simply incorporates the current utterance as
a terminal of the special-offer subtree.

5 Data and Experiments

To evaluate our parse-based dialog model, we used
817 two-party dialogs from the CHILD corpus of
telephone-based dialogs in a catalog-purchasing
domain. Each dialog was transcribed by hand;
all numbers (telephone, credit card, etc.) were
removed for privacy reasons. The average di-
alog in this data set had 60 turns. The di-
alogs were automatically segmented into utter-
ances and automatically annotated with part-of-
speech tag and supertag information and named
entities. They were annotated by hand for dia-
log acts and tasks/subtasks. The dialog act and
task/subtask labels are given in Tables 2 and 3.

5.1 Features
In our experiments we used the following features
for each utterance: (a) the speaker ID; (b) uni-
grams, bigrams and trigrams of the words; (c) un-
igrams, bigrams and trigrams of the part of speech
tags; (d) unigrams, bigrams and trigrams of the su-
pertags; (e) binary features indicating the presence
or absence of particular types of named entity; (f)
the dialog act (determined by the parser); (g) the
task/subtask label (determined by the parser); and
(h) the parser stack at the current utterance (deter-
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mined by the parser). Each input feature vector for
agent subtask prediction has these features for up
to three utterances of left-hand context (see Equa-
tion 3). Each input feature vector for dialog act
prediction has the same features as for agent sub-
task prediction, plus the actual or predicted sub-
task label (see Equation 4). Each input feature
vector for dialog act interpretation has features a-
h for up to three utterances of left-hand context,
plus the current utterance (see Equation 1). Each
input feature vector for user subtask classication
has the same features as for user dialog act inter-
pretation, plus the actual or classied dialog act
(see Equation 2).

The label for each input feature vector is the
parsing action (for subtask classication and pre-
diction) or the dialog act label (for dialog act clas-
sication and prediction). If more than one pars-
ing action takes place on a particular utterance
(e.g. a shift and then a reduce), the feature vec-
tor is repeated twice with different stack contents.

5.2 Training Method
We randomly selected roughly 90% of the dialogs
for training, and used the remainder for testing.

We separately trained models for: user dia-
log act classication (DAC, Equation 1); user
task/subtask classication (STC, Equation 2);
agent task/subtask prediction (STP, Equation 3);
and agent dialog act prediction (DAP, Equation 4).
In order to estimate the conditional distributions
shown in Table 1, we use the general technique of
choosing the MaxEnt distribution that properly es-
timates the average of each feature over the train-
ing data (Berger et al., 1996). We use the machine
learning toolkit LLAMA (Haffner, 2006), which
encodes multiclass classication problems using
binary MaxEnt classiers to increase the speed of
training and to scale the method to large data sets.

5.3 Decoding Method
The decoding process for the three parsing meth-
ods is illustrated in Figure 3 and has four stages:
STP, DAP, DAC, and STC. As already explained,
each of these steps in the decoding process is mod-
eled as either a prediction task or a classica-
tion task. The decoder constructs an input feature
vector depending on the amount of context being
used. This feature vector is used to query the ap-
propriate classier model to obtain a vector of la-
bels with weights. The parser action labels (STP
and STC) are used to extend the subtask tree. For

example, in the shift-reduce method, shift results
in a push action on the stack, while reduce-X re-
sults in popping the top two elements off the stack
and pushing X on to the stack. The dialog act la-
bels (DAP and DAC) are used to label the leaves
of the subtask tree (the utterances).

The decoder can use n-best results from the
classier to enlarge the search space. In order
to manage the search space effectively, the de-
coder uses a beam pruning strategy. The decod-
ing process proceeds until the end of the dialog is
reached. In this paper, we assume that the end of
the dialog is given to the decoder3.

Given that the classiers are error-prone in their
assignment of labels, the parsing step of the de-
coder needs to be robust to these errors. We ex-
ploit the state of the stack in the different meth-
ods to rule out incompatible parser actions (e.g. a
reduce-X action when the stack has one element,
a shift action on an already shifted utterance). We
also use n-best results to alleviate the impact of
classication errors. Finally, at the end of the di-
alog, if there are unattached constituents on the
stack, the decoder attaches them as sibling con-
stituents to produce a rooted tree structure. These
constraints contribute to robustness, but cannot be
used with the connection path method, since any
connection path (parsing action) suggested by the
classier can be incorporated into the incremental
parse tree. Consequently, in the connection path
method there are fewer opportunities to correct the
errors made by the classiers.

5.4 Evaluation Metrics
We evaluate dialog act classication and predic-
tion by comparing the automatically assigned di-
alog act tags to the reference dialog act tags.
For these tasks we report accuracy. We evaluate
subtask classication and prediction by compar-
ing the subtask trees output by the different pars-
ing methods to the reference subtask tree. We
use the labeled crossing bracket metric (typically
used in the syntactic parsing literature (Harrison et
al., 1991)), which computes recall, precision and
crossing brackets for the constituents (subtrees) in
a hypothesized parse tree given the reference parse
tree. We report F-measure, which is a combination
of recall and precision.

For each task, performance is reported for 1, 3,
3This is an unrealistic assumption if the decoder is to

serve as a dialog model. We expect to address this limitation
in future work.
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5, and 10-best dynamic decoding as well as oracle
(Or) and for 0, 1 and 3 utterances of context.

5.5 Results
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Figure 5: Performance of parse-based methods for
subtask tree building

Figure 5 shows the performance of the different
methods for determining the subtask tree of the di-
alog. Wider beam widths do not lead to improved
performance for any method. One utterance of
context is best for shift-reduce and start-join; three
is best for the connection path method. The shift-
reduce method performs the best. With 1 utter-
ance of context, its 1-best f-score is 47.86, as com-
pared with 34.91 for start-complete, 25.13 for the
connection path method, and 21.32 for the chunk-
based baseline. These performance differences are
statistically signicant at p < .001. However, the
best performance for the shift-reduce method is
still signicantly worse than oracle.

All of the methods are subject to some ‘stick-
iness’, a certain preference to stay within the
current subtask rather than starting a new one.
Also, all of the methods tended to perform poorly
on parsing subtasks that occur rarely (e.g. call-
forward, order-change) or that occur at many dif-
ferent locations in the dialog (e.g. out-of-domain,
order-problem, check-availability). For example,
the shift-reduce method did not make many shift
errors but did frequently b-reduce on an incor-
rect non-terminal (indicating trouble identifying
subtask boundaries). Some non-terminals most
likely to be labeled incorrectly by this method
(for both agent and user) are: call-forward, order-
change, summary, order-problem, opening and
out-of-domain.

Similarly, the start-complete method frequently
mislabeled a non-terminal in a complete action,
e.g. misc-other, check-availability, summary or
contact-info. It also quite frequently mislabeled
nonterminals in n-start actions, e.g. order-item,
contact-info or summary. Both of these errors in-
dicate trouble identifying subtask boundaries.

It is harder to analyze the output from the con-
nection path method. This method is more likely
to mislabel tree-internal nodes than those imme-
diately above the leaves. However, the same
non-terminals show up as error-prone for this
method as for the others: out-of-domain, check-
availability, order-problem and summary.
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Figure 6: Performance of dialog act assignment to
user’s utterances.

Figure 6 shows accuracy for classication of
user dialog acts. Wider beam widths do not
lead to signcantly improved performance for any
method. Zero utterances of context gives the high-
est accuracy for all methods. All methods per-
form fairly well, but no method signicantly out-
performs any other: with 0 utterances of context,
1-best accuracy is .681 for the connection path
method, .698 for the start-complete method and
.698 for the shift-reduce method. We note that
these results are competitive with those reported
in the literature (e.g. (Poesio and Mikheev, 1998;
Seran and Eugenio, 2004)), although the dialog
corpus and the label sets are different.

The most common errors in dialog act classi-
cation occur with dialog acts that occur 40 times
or fewer in the testing data (out of 3610 testing
utterances), and with Not(Information).

Figure 7 shows accuracy for prediction of agent
dialog acts. Performance for this task is lower than
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Speaker Utterance Shift-Reduce Start-Complete Connection Path
A This is Sally shift, Hello start-opening, Hello opening S, Hello
A How may I help you shift, binary-reduce-out-of-

domain, Hello
complete-opening,
Hello

opening S, Hello

B Yes Not(Information), shift,
binary-reduce-out-of-domain

Not(Information),
complete-opening

Not(Information), open-
ing S

B Um I would like to place
an order please

Rquest(Make-Order), shift,
binary-reduce-opening

Rquest(Make-Order),
complete-opening,
n-start-S

Rquest(Make-Order),
opening S

A May I have your tele-
phone number with the
area code

shift, Acknowledge start-contact-info, Ac-
knowledge

contact-info S,
Request(Phone-Number)

B Uh the phone number is
[number]

Explain(Phone-Number),
shift, binary-reduce-contact-
info

Explain(Phone-
Number), complete-
contact-info

Explain(Phone-Number),
contact-info S

Table 4: Dialog extract with subtask tree building actions for three parsing methods
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Figure 7: Performance of dialog act prediction
used to generate agent utterances.

that for dialog act classication because this is a
prediction task. Wider beam widths do not gener-
ally lead to improved performance for any method.
Three utterances of context generally gives the
best performance. The shift-reduce method per-
forms signicantly better than the connection path
method with a beam width of 1 (p < .01), but not
at larger beam widths; there are no other signi-
cant performance differences between methods at
3 utterances of context. With 3 utterances of con-
text, 1-best accuracies are .286 for the connection
path method, .329 for the start-complete method
and .356 for the shift-reduce method.

The most common errors in dialog act predic-
tion occur with rare dialog acts, Not(Information),
and the prediction of Acknowledge at the start of a
turn (we did not remove grounding acts from the
data). With the shift-reduce method, some YNQ
acts are commonly mislabeled. With all methods,

dialog acts pertaining to Order-Info and Product-
Info acts are commonly mislabeled, which could
potentially indicate that these labels require a sub-
tle distinction between information pertaining to
an order and information pertaining to a product.

Table 4 shows the parsing actions performed by
each of our methods on the dialog snippet pre-
sented in Figure 4. For this example, the connec-
tion path method’s output is correct in all cases.

6 Conclusions and Future Work

In this paper, we present a parsing-based model
of task-oriented dialog that tightly integrates in-
terpretation and generation using a subtask tree
representation, can be trained from data, and runs
incrementally for use in dialog management. At
the core of this model is a parser that incremen-
tally builds the dialog task structure as it interprets
user actions and generates system actions. We ex-
periment with three different incremental parsing
methods for our dialog model. Our proposed shift-
reduce method is the best-performing so far, and
performance of this method for dialog act classi-
cation and task/subtask modeling is good enough
to be usable. However, performance of all the
methods for dialog act prediction is too low to be
useful at the moment. In future work, we will ex-
plore improved models for this task that make use
of global information about the task (e.g. whether
each possible subtask has yet been completed;
whether required and optional task-related con-
cepts such as shipping address have been lled).
We will also separate grounding and task-related
behaviors in our model.
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