
Proceedings of the 12th Conference of the European Chapter of the ACL, pages 710–718,
Athens, Greece, 30 March – 3 April 2009. c©2009 Association for Computational Linguistics

A General, Abstract Model of Incremental Dialogue Processing

David Schlangen
Department of Linguistics

University of Potsdam, Germany
das@ling.uni-potsdam.de

Gabriel Skantze∗

Dept. of Speech, Music and Hearing
KTH, Stockholm, Sweden

gabriel@speech.kth.se

Abstract

We present a general model and concep-
tual framework for specifying architec-
tures for incremental processing in dia-
logue systems, in particular with respect
to the topology of the network of modules
that make up the system, the way informa-
tion flows through this network, how in-
formation increments are ‘packaged’, and
how these increments are processed by the
modules. This model enables the precise
specification of incremental systems and
hence facilitates detailed comparisons be-
tween systems, as well as giving guidance
on designing new systems.

1 Introduction

Dialogue processing is, by its very nature,incre-
mental. No dialogue agent (artificial or natural)
processes whole dialogues, if only for the simple
reason that dialogues arecreatedincrementally, by
participants taking turns. At this level, most cur-
rent implemented dialogue systems are incremen-
tal: they process user utterances as a whole and
produce their response utterances as a whole.

Incremental processing, as the term is com-
monly used, means more than this, however,
namely that processing starts before the input is
complete (e.g., (Kilger and Finkler, 1995)). Incre-
mental systems hence are those where “Each pro-
cessing component will be triggered into activity
by a minimal amount of its characteristic input”
(Levelt, 1989). If we assume that the character-
istic input of a dialogue system is the utterance
(see (Traum and Heeman, 1997) for an attempt to
define this unit), we would expect an incremental
system to work on units smaller than utterances.

Our aim in the work presented here is to de-
scribe and give names to the options available to

∗The work reported here was done while the second au-
thor was at the University of Potsdam.

designers of incremental systems. We define some
abstract data types, some abstract methods that
are applicable to them, and a range of possible
constraints on processing modules. The notions
introduced here allow the (abstract) specification
of a wide range of different systems, from non-
incremental pipelines to fully incremental, asyn-
chronous, parallel, predictive systems, thus mak-
ing it possible to be explicit about similarities and
differences between systems. We believe that this
will be of great use in the future development of
such systems, in that it makes clear the choices
and trade-offs one can make. While we sketch our
work on one such system, our main focus here
is on the conceptual framework. What we are
not doing here is to argue for one particular ’best
architecture’—what this is depends on the particu-
lar aims of an implementation/model and on more
low-level technical considerations (e.g., availabil-
ity of processing modules).1

In the next section, we give some examples of
differences in system architectures that we want to
capture, with respect to the topology of the net-
work of modules that make up the system, the
way information flows through this network and
how the modules process information, in partic-
ular how they deal with incrementality. In Sec-
tion 3, we present the abstract model that under-
lies the system specifications, of which we give an
example in Section 4. We close with a brief dis-
cussion of related work.

2 Motivating Examples

Figure 1 shows three examples ofmodule net-
works, representations of systems in terms of their
component modules and the connections between
them. Modules are represented by boxes, and con-
nections by arrows indicating the path and the di-

1As we are also not trying toproveproperties of the spec-
ified systems here, the formalisations we give are not sup-
ported by a formal semantics here.

710



rection of information flow. Arrows not coming
from or going to modules represent the global in-
put(s) and output(s) to and from the system.

Figure 1: Module Network Topologies

One of our aims here is to facilitate exact and
concise description of the differences between
module networks such as in the example. Infor-
mally, the network on the left can be described as
a simple pipeline with no parallel paths, the one in
the middle as a pipeline enhanced with a parallel
path, and the one on the right as a star-architecture;
we want to be able to describe exactly the con-
straints that define each type of network.

A second desideratum is to be able to specify
how information flows in the system and between
the modules, again in an abstract way, without
saying much about the information itself (as the
nature of the information depends on details of
the actual modules). The directed edges in Fig-
ure 1 indicate the direction of information flow
(i.e., whose output is whose input); as an addi-
tional element, we can visualiseparallel informa-
tion streams between modules as in Figure 2 (left),
where multiple hypotheses about the same input
increments are passed on. (This isn’t meant to
imply that there are three actual communications
channels active. As described below, we will en-
code the parallelism directly on the increments.)

One way such parallelism may occur in an in-
cremental dialogue system is illustrated in Fig-
ure 2 (right), where for some stretches of an input
signal (a sound wave), alternative hypotheses are
entertained (note that the boxes here donot repre-
sent modules, but rather bits of incremental infor-
mation). We can view these alternative hypothe-

Figure 2: Parallel Information Streams (left) and
Alternative Hypotheses (right)

Figure 3: Incremental Input mapped to (less) in-
cremental output

Figure 4: Example of Hypothesis Revision

ses about the same original signal as being paral-
lel to each other (with respect to the input they are
grounded in).

We also want to be able to specify the ways in-
cremental bits of input (“minimal amounts of char-
acteristic input”) can relate to incremental bits of
output. Figure 3 shows one possible configuration,
where over time incremental bits of input (shown
in the left column) accumulate before one bit of
output (in the right column) is produced. (As for
example in a parser that waits until it can com-
pute a major phrase out of the words that are its
input.) Describing the range of possible module
behaviours with respect to such input/output rela-
tions is another important element of the abstract
model presented here.

It is in the nature of incremental processing,
where output is generated on the basis of incom-
plete input, that such output may have to be re-
vised once more information becomes available.
Figure 4 illustrates such a case. At time-stept1,
the available frames of acoustic features lead the
processor, an automatic speech recogniser, to hy-
pothesize that the word “four” has been spoken.
This hypothesis is passed on as output. However,
at time-pointt2, as additional acoustic frames have
come in, it becomes clear that “forty” is a bet-
ter hypothesis about the previous frames together
with the new ones. It is now not enough to just
output the new hypothesis: it is possible that later
modules have already started to work with the hy-
pothesis “four”, so the changed status of this hy-
pothesis has to be communicated as well. This is
shown at time-stept3. Defining such operations
and the conditions under which they are necessary

711



is the final aim of our model.

3 The Model

3.1 Overview

We model a dialogue processing system in an ab-
stract way as a collection of connected processing
modules, where information is passed between the
modules along these connections. The third com-
ponent beside the modules and their connections is
the basic unit of information that is communicated
between the modules, which we call theincremen-
tal unit (IU). We will only characterise those prop-
erties of IUs that are needed for our purpose of
specifying different system types and basic oper-
ations needed for incremental processing; we will
not say anything about the actual, module specific
payloadof these units.

The processing module itself is modelled as
consisting of aLeft Buffer (LB), the Processor
proper, and aRight Buffer (RB). When talking
about operations of the Processor, we will some-
times useLeft Buffer-Incremental Unit(LB-IU)
for units in LB andRight Buffer-Incremental Unit
(RB-IU) for units in RB.

This setup is illustrated in Figure 4 above. IUs
in LB (here, acoustic frames as input to an ASR)
areconsumedby the processor (i.e., is processed),
which creates an internal result, in the case shown
here, this internal result ispostedas an RB-IU only
after a series of LB-IUs have accumulated. In our
descriptions below, we will abstract away from the
time processing takes and describe Processors as
relations between (sets of) LBs and RBs.

We begin our description of the model with the
specification of network topologies.

3.2 Network Topology

Connections between modules are expressed
throughconnectedness axiomswhich simply state
that IUs in one module’s right buffer are also in
another buffer’s left buffer. (Again, in an imple-
mented system communication between modules
will take time, but we abstract away from this
here.) This connection can also be partial or fil-
tered. For example,∀x(x ∈ RB1 ∧ NP (x) ↔
x ∈ LB2) expresses that all and only NPs in mod-
ule one’s right buffer appear in module two’s left
buffer. If desired, a given RB can be connected to
more than one LB, and more than one RB can feed
into the same LB (see the middle example in Fig-
ure 1). Together, the set of these axioms define the

network topology of a concrete system. Different
topology types can then be defined through con-
straints on module sets and their connections. I.e.,
a pipeline system is one in which it cannot hap-
pen that an IU is in more than one right buffer and
more than one left buffer.

Note that we are assuming token identity here,
and not for example copying of data struc-
tures. That is, we assume that it indeed is the
same IU that is in the left and right buffers
of connected modules. This allows a spe-
cial form of bi-directionality to be implemented,
namely one where processors are allowed to make
changes to IUs in their buffers, and where these
changes automatically percolate through the net-
work. This is different to and independent of
the bi-directionality that can be expressed through
connectedness axioms.

3.3 Incremental Units

So far, all we have said about IUs is that they are
holding a ‘minimal amount of characteristic input’
(or, of course, a minimal amount of characteris-
tic output, which is to be some other module’s in-
put). Communicating just these minimal informa-
tion bits is enough only for the simplest kind of
system that we consider, a pipeline with only a
single stream of information and no revision. If
more advanced features are desired, there needs to
be more structure to the IUs. In this section we de-
fine what we see as the most complete version of
IUs, which makes possible operations like hypoth-
esis revision, prediction, and parallel hypothesis
processing. (These operations will be explained in
the next section.) If in a particular system some of
these operations aren’t required, some of the struc-
ture on IUs can be simplified.

Informally, the representational desiderata are
as follows. First, we want to be able to repre-
sent relations between IUs produced by the same
processor. For example, in the output of an ASR,
two word-hypothesis IUs may stand in asucces-
sor relation, meaning that word 2 is what the ASR
takes to be the continuation of the utterance be-
gun with word 1. In a different situation, word 2
may be an alternative hypothesis about the same
stretch of signal as word 1, and here a different re-
lation would hold. The incremental outputs of a
parser may be related in yet another way, through
dominance: For example, a newly built IU3, rep-
resenting a VP, may want to express that it links

712



via a dominance relation to IU1, a V, and IU2, an
NP, which were both posted earlier. What is com-
mon to all relations of this type is that they relate
IUs coming from the same processor(s); we will
in this case say that the IUs areon the same level.
Information about thesesame level linkswill be
useful for the consumers of IUs. For example, a
parsing module consuming ASR-output IUs will
need to do different things depending on whether
an incoming IU continues an utterance or forms an
alternative hypothesis to a string that was already
parsed.

The second relation between IUs that we want
to capture cuts across levels, by linking RB-IUs to
those LB-IUs that were used by the processor to
produce them. For this we will say that the RB-IU
is groundedin LB-IU(s). This relation then tracks
the flow of information through the modules; fol-
lowing its transitive closure one can go back from
the highest level IU, which is output by the sys-
tem, to the input IU or set of input IUs on which it
is ultimately grounded. The network spanned by
this relation will be useful in implementing the re-
vision process mentioned above when discussing
Figure 4, where the doubt about a hypothesis must
spread to all hypotheses grounded in it.

Apart from these relations, we want IUs to carry
three other types of information: a confidence
score representing the confidence its producer had
in it being accurate; a field recording whether revi-
sions of the IU are still to be expected or not; and
another field recording whether the IU has already
been processed by consumers, and if so, by whom.

Formally, we define IUs as tuplesIU =
〈I,L,G,T , C,S,P〉, where

• I is an identifier, which has to be unique for
each IU over the lifetime of a system. (That
is, at no point in the system’s life can there be
two or more IUs with the same ID.)

• L is thesame level link, holding a statement
about how, if at all, the given IU relates to
other IUs at the same level, that is, to IUs pro-
duced by the same processor. If an IU is not
linked to any other IU, this slot holds the spe-
cial value⊤.
The definition demands that the same level
links of all IUs belonging to the same larger
unit form a graph; the type of the graph will
depend on the purposes of the sending and
consuming module(s). For a one-best output
of an ASR it might be enough for the graph

to be a chain, whereas an n-best output might
be better represented as a tree (with all first
words linked to⊤) or even a lattice (as in
Figure 2 (right)); the output of a parser might
require trees (possibly underspecified).

• G is thegrounded infield, holding an ordered
list of IDs pointing to those IUs out of which
the current IU was built. For example, an IU
holding a (partial) parse might be grounded
in a set of word hypothesis IUs, and these in
turn might be grounded in sets of IUs holding
acoustic features. While thesame level link
always points to IUs on the same level, the
grounded inlink always points to IUs from
a previous level.2 The transitive closure of
this relation hence links system output IUs to
a set of system input IUs. For convenience,
we may define a predicatesupports(x,y)for
cases wherey is grounded inx; and hence
the closure of this relation links input-IUs to
the output that is (eventually) built on them.
This is also the hook for the mechanism that
realises the revision process described above
with Figure 4: if a module decides to re-
voke one of its hypotheses, it sets its confi-
dence value (see below) to 0; on noticing this
event, all consuming modules can then check
whether they have produced RB-IUs that link
to this LB-IU, and do the same for them. In
this way, information about revision will au-
tomatically percolate through the module net-
work.
Finally, an emptygrounded infield can also
be used to triggerprediction: if an RB-IU has
an emptygrounded infield, this can be under-
stood as a directive to the processor to find
evidence for this IU (i.e., to prove it), using
the information in its left buffer.

• T is the confidence(or trust) slot, through
which the generating processor can pass on
its confidence in its hypothesis. This then can
have an influence on decisions of the con-
suming processor. For example, if there are
parallel hypotheses of different quality (con-
fidence), a processor may decide to process

2The link to the previous level may be indirect. E.g.,
for an IU holding a phrase that is built out of previously
built phrases (and not words), this link may be expressed by
pointing to the same level link, meaning something like “I’m
grounded in whatever the IUs are grounded in that I link to
on the same level link, and also in the act of combination that
is expressed in that same level link”.

713



(and produce output for) the best first.
A special value (e.g., 0, or -1) can be defined
to flag hypotheses that are being revoked by
a processor, as described above.

• C is thecommittedfield, holding a Boolean
value that indicates whether the producing
module has committed to the IU or not, that
is, whether it guarantees that it will never re-
voke the IU. See below for a discussion of
how such a decision may be made, and how
it travels through the module network.

• S is the seenfield. In this field consum-
ing processors can record whether they have
“looked at”—that is, attempted to process—
the IU. In the simplest case, the positive fact
can be represented simply by adding the pro-
cessor ID to the list; in more complicated
setups one may want to offer status infor-
mation like “is being processed by module
ID” or “no use has been found for IU by
module ID”. This allows processors both to
keep track of which LB-IUs they have al-
ready looked at (and hence, to more easily
identify new material that may have entered
their LB) and to recognise which of its RB-
IUs have been of use to later modules, infor-
mation which can then be used for example
to make decisions on which hypothesis to ex-
pand next.

• P finally is the actualpayload, the module-
specific unit of ‘characteristic input’, which
is what is processed by the processor in order
to produce RB-IUs.

It will also be useful later to talk about thecom-
pletenessof an IU (or of sets of IUs). This we de-
fine informally as its relation to (the type of) what
would count as amaximal input or output of the
module. For example, for an ASR module, such
maximally complete input may be the recording of
the whole utterance, for the parser maximal out-
put may be a parse of type sentence (as opposed
to one of type NP, for example).3 This allows us
to see non-incremental systems as a special case
of incremental systems, namely those with only
maximally complete IUs, which are always com-
mitted.

3This definition will only be used for abstractly classify-
ing modules. Practically, it is of course rarely possible to
know how complete or incomplete the already seen part of
an ongoing input is. Investigating how a dialogue system can
better predict completion of an utterance is in fact one of the
aims of the project in which this framework was developed.

3.4 Modules

3.4.1 Operations

We describe in this section operations that the pro-
cessors may perform on IUs. We leave open how
processors are triggered into action, we simply as-
sume that on receiving new LB-IUs or noticing
changes to LB or RB-IUs, they will eventually per-
form these operations. Again, we describe here the
complete set of operations; systems may differ in
which subset of the functions they implement.

purge LB-IUs that are revoked by their producer
(by having their confidence score set to the special
value) must be purged from the internal state of the
processor (so that they will not be used in future
updates) and all RB-IUs grounded in them must
be revoked as well.

Some reasons for revoking hypotheses have al-
ready been mentioned. For example, a speech
recogniser might decide that a previously output
word hypothesis is not valid anymore (i.e., is not
anymore among the n-best that are passed on). Or,
a parser might decide in the light of new evidence
that a certain structure it has built is a dead end,
and withdraw support for it. In all these cases,all
‘later’ hypotheses that build on this IU (i.e., all hy-
potheses that are in the transitive closure of this
IU’s supportrelation) must be purged. If all mod-
ules implement the purge operation, this revision
information will be guaranteed to travel through
the network.

update New LB-IUs are integrated into the in-
ternal state, and eventually new RB-IUs are built
based on them (not necessarily in the same fre-
quency as new LB-IUs are received; see Figure 3
above, and discussion below). The fields of the
new RB-IUs (e.g., thesame level linksand the
grounded inpointers) are filled appropriately. This
is in some sense the basic operation of a processor,
and must be implemented in all useful systems.

We can distinguish two implementation strate-
gies for dealing with updates: a) all state is thrown
away and results are computed again for the whole
input set. The result must then be compared with
the previous result to determine what the new out-
put increment is. b) The new information is in-
tegrated into internal state, and only the new out-
put increment is produced. For our purposes here,
we can abstract away from these differences and
assume that only actual increments are commu-
nicated. (Practically, it might be an advantage to
keep using an existing processor and just wrap it

714



into a module that computes increments by differ-
ences.)

We can also distinguish between modules along
another dimension, namely based on which types
of updates are allowed. To do so, we must first
define the notion of a ‘right edge’ of a set of
IUs. This is easiest to explain for strings, where
the right edge simply is the end of the string, or
for a lattice, where it is the (set of) smallest ele-
ment(s). A similar notion may be defined for trees
as well (compare the ‘right frontier constraint’
of Polanyi (1988)). If now a processor only ex-
pects IUs that extend the right frontier, we can
follow Wirén (1992) in saying that it is onlyleft-
to-right incremental. Within what Wirén (1992)
calls fully incremental, we can make more dis-
tinctions, namely according to whether revisions
(as described above) and/orinsertionsare allowed.
The latter can easily be integrated into our frame-
work, by allowingsame-level linksto be changed
to fit new IUs into existing graphs.

Processors can takesupportsinformation into
account when deciding on their update order. A
processor might for example decide to first try to
use the new information (in its LB) to extend struc-
tures that have already proven useful to later mod-
ules (that is, that support new IUs). For example,
a parser might decide to follow an interpretation
path that is deemed more likely by a contextual
processing module (which has grounded hypothe-
ses in the partial path). This may result in better
use of resources—the downside of such a strategy
of course is that modules can be garden-pathed.4

Update may also work towards a goal. As men-
tioned above, putting ungrounded IUs in a mod-
ule’s RB can be understood as a request to the
module to try to find evidence for it. For exam-
ple, the dialogue manager might decide based on
the dialogue context that a certain type of dialogue
act is likely to follow. By requesting the dialogue
act recognition module to find evidence for this
hypothesis, it can direct processing resources to-
wards this task. (The dialogue recognition mod-
ule then can in turn decide on which evidence it
would like to see, and ask lower modules to prove
this. Ideally, this could filter down to the interface
module, the ASR, and guide its hypothesis form-
ing. Technically, something like this is probably
easier to realise by other means.)

4It depends on the goals behind building the model
whether this is considered a downside or desired behaviour.

We finally note that in certain setups it may be
necessary to consume different types of IUs in one
module. As explained above, we allow more than
one module to feed into another modules LB. An
example where something like this could be useful
is in the processing of multi-modal information,
where information about both words spoken and
gestures performed may be needed to compute an
interpretation.
commit There are three ways in which a proces-
sor may have to deal with commits. First, it can
decide for itself to commit RB-IUs. For example,
a parser may decide to commit to a previously built
structure if it failed to integrate into it a certain
number of new words, thus assuming that the pre-
vious structure is complete. Second, a processor
may notice that a previous module has committed
to IUs in its LB. This might be used by the proces-
sor to remove internal state kept for potential re-
visions. Eventually, this commitment of previous
modules might lead the processor to also commit
to its output, thus triggering a chain of commit-
ments.

Interestingly, it can also make sense to let com-
mits flow from right to left. For example, if the
system has committed to a certain interpretation
by making a publicly observable action (e.g., an
utterance, or a multi-modal action), this can be
represented as a commit on IUs. This information
would then travel down the processing network;
leading to the potential for a clash between a re-
voke message coming from the left and the com-
mit directive from the right. In such a case, where
the justification for an action is revoked when the
action has already been performed, self-correction
behaviours can be executed.5

3.4.2 Characterising Module Behaviour

It is also useful to be able to abstractly describe the
relation between LB-IUs and RB-IUs in a module
or a collection of modules. We do this here along
the dimensionsupdate frequency, connectedness
andcompleteness.

Update Frequency The first dimension we con-
sider here is that of how the update frequency of
LB-IUs relates to that of (connected) RB-IUs.

We write f:in=out for modules that guarantee
that every new LB-IU will lead to a new RB-IU

5In future work, we will explore in more detail if and
how through the implementation of a self-monitoring cycle
and commitsand revokesthe various types of dysfluencies
described for example by Levelt (1989) can be modelled.

715



(that is grounded in the LB-IU). In such a setup,
the consuming module lags behind the sending
module only for exactly the time it needs to pro-
cess the input. Following Nivre (2004), we can
call thisstrict incrementality.

f:in≥out describes modules that potentially col-
lect a certain amount of LB-IUs before producing
an RB-IU based on them. This situation has been
depicted in Figure 3 above.

f:in≤out characterises modules that update RB
moreoften than their LB is updated. This could
happen in modules that produce endogenic infor-
mation like clock signals, or that produce contin-
uously improving hypotheses over the same input
(see below), or modules that ‘expand’ their input,
like a TTS that produces audio frames.

Connectedness We may also want to distin-
guish between modules that produce ‘island’ hy-
potheses that are, at least when initially posted, not
connected viasame level linksto previously out-
put IUs, and those that guarantee that this is not
the case. For example, to achieve anf:in=out be-
haviour, a parser may output hypotheses that are
not connected to previous hypotheses, in which
case we may call the hypotheses ‘unconnected’.
Conversely, to guarantee connectedness, a parsing
module might need to accumulate input, resulting
in an f:in≥out behaviour.6

Completeness Building on the notion of com-
pleteness of (sets of) IUs introduced above, we
can also characterise modules according to how
the completeness of LB and RB relates.

In a c:in=out-type module, the most complete
RB-IU (or set of RB-IUs) is only as complete as
the most complete (set of) LB-IU(s). That is, the
module does not speculate about completions, nor
does it lag behind. (This may technically be diffi-
cult to realise, and practically not very relevant.)

More interesting is the difference between the
following types: In ac:in≥out-type module, the
most complete RB-IU potentially lags behind the
most complete LB-IU. This will typically be the
case inf:in≥out modules. c:in≤out-type mod-
ules finally potentially produce output that ismore
complete than their input, i.e., theypredictcontin-
uations. An extreme case would be a module that
always predicts complete output, given partial in-
put. Such a module may be useful in cases where

6The notion ofconnectednessis adapted from Sturt and
Lombardo (2005), who provide evidence that the human
parser strives for connectedness.

modules have to be used later in the processing
chain that can only handle complete input (that is,
are non-incremental); we may call such a system
prefix-based predictive, semi-incremental.

With these categories in hand, we can make
further distinctions within what Dean and Boddy
(1988) callanytime algorithms. Such algorithms
are defined as a) producing output at any time,
which however b) improves in quality as the al-
gorithm is given more time. Incremental mod-
ules by definition implement a reduced form of
a): they may not produce an output at any
time, but they do produce output at more times
than non-incremental modules. This output then
also improves over time, fulfilling condition b),
since more input becomes available and either
the guesses the module made (if it is ac:out≥in
module) will improve or the completeness in
general increases (as more complete RB-IUs are
produced). Processing modules, however, can
also be anytime algorithms in a more restricted
sense, namely if they continuously produce new
and improved output even for a constant set of
LB-IUs, i.e. without changes on the input side.
(Which would bring them towards thef:out≥in be-
haviour.)

3.5 System Specification

Combining all these elements, we can finally de-
fine a system specification as the following:

• A list of modules that are part of the system.
• For each of those a description in terms

of which operations from Section 3.4.1 the
module implements, and a characterisation of
its behaviour in the terms of Section 3.4.2.

• A set of axioms describing the connections
between module buffers (and hence the net-
work topology), as explained in Section 3.2.

• Specifications of the format of the IUs that
are produced by each module, in terms of the
definition of slots in Section 3.3.

4 Example Specification

We have built a fully incremental dialogue system,
called NUMBERS (for more details see Skantze
and Schlangen (2009)), that can engage in dia-
logues in a simple domain, number dictation. The
system can not only be described in the terms ex-
plained here, but it also directly instantiates some
of the data types described here.

716



Figure 5: The NUMBERS System Architecture
(CA = communicative act)

The module network topology of the system is
shown in Figure 5. This is pretty much a stan-
dard dialogue system layout, with the exception
that prosodic analysis is done in the ASR and that
dialogue management is divided into a discourse
modelling module and an action manager. As can
be seen in the figure, there is also a self-monitoring
feedback loop—the system’s actions are sent from
the TTS to the discourse modeller. The system
has two modules that interface with the environ-
ment (i.e., are system boundaries): the ASR and
the TTS.

A single hypothesis chain connects the mod-
ules (that is, no two same level links point to the
same IU). Modules pass messages between them
that can be seen as XML-encodings of IU-tokens.
Information strictly flows from LB to RB. All IU
slots except seen (S) are realised. The purge and
commit operations are fully implemented. In the
ASR, revision occurs as already described above
with Figure 4, and word-hypothesis IUs are com-
mitted (and the speech recognition search space is
cleared) after 2 seconds of silence are detected.
(Note that later modules work with all IUs from
the moment that they are sent, and do not have
to wait for them being committed.) The parser
may revoke its hypotheses if the ASR revokes the
words it produces, but also if it recovers from a
“garden path”, having built and closed off a larger
structure too early. As a heuristic, the parser
waits until a syntactic construct is followed by
three words that are not part of it until it com-
mits. For each new discourse model increment,
the action manager may produce new communica-
tive acts (CAs), and possibly revoke previous ones
that have become obsolete. When the system has
spoken a CA, this CA becomes committed, which
is recorded by the discourse modeller.

No hypothesis testing is done (that is, no un-
grounded information is put on RBs). All modules

have af:in≥out; c:in≥out characteristic.
The system achieves a very high degree of

responsiveness—by using incremental ASR and
prosodic analysis for turn-taking decisions, it can
react in around 200ms when suitable places for
backchannels are detected, which should be com-
pared to a typical minimum latency of 750ms
in common systems where only a simple silence
threshold is used.

5 Related Work, Future Work

The model described here is inspired partially by
Young et al. (1989)’s token passing architecture;
our model can be seen as a (substantial) general-
isation of the idea of passing smaller information
bits around, out of the domain of ASR and into the
system as a whole. Some of the characterisations
of the behaviour of incremental modules were in-
spired by Kilger and Finkler (1995), but again we
generalised the definitions to fit all kinds of incre-
mental modules, not just generation.

While there recently have been a number of
papers about incremental systems (e.g., (DeVault
and Stone, 2003; Aist et al., 2006; Brick and
Scheutz, 2007)), none of those offer general con-
siderations about architectures. (Despite its title,
(Aist et al., 2006) also only describes one particu-
lar setup.)

In future work, we will give descriptions of
these systems in the terms developed here. We
are also currently exploring how more cognitively
motivated models such as that of generation by
Levelt (1989) can be specified in our model. A
further direction for extension is the implementa-
tion of modality fusion as IU-processing. Lastly,
we are now starting to work on connecting the
model for incremental processing and ground-
ing of interpretations in previous processing re-
sults described here with models of dialogue-level
grounding in the information-state update tradi-
tion (Larsson and Traum, 2000). The first point
of contact here will be the investigation of self-
corrections, as a phenomenon that connects sub-
utterance processing and discourse-level process-
ing (Ginzburg et al., 2007).

AcknowledgmentsThis work was funded by a grant in the

DFG Emmy Noether Programme. Thanks to Timo Baumann

and Michaela Atterer for discussion of the ideas reported

here, and to the anonymous reviewers for their very detailed

and helpful comments.

717



References

G.S. Aist, J. Allen, E. Campana, L. Galescu, C.A.
Gomez Gallo, S. Stoness, M. Swift, and M Tanen-
haus. 2006. Software architectures for incremental
understanding of human speech. InProceedings of
the International Conference on Spoken Language
Processing (ICSLP), Pittsburgh, PA, USA, Septem-
ber.

Timothy Brick and Matthias Scheutz. 2007. Incremen-
tal natural language processing for HRI. InProceed-
ings of the Second ACM IEEE International Confer-
ence on Human-Robot Interaction, pages 263–270,
Washington, DC, USA.

Thomas Dean and Mark Boddy. 1988. An analysis of
time-dependent planning. InProceedings of AAAI-
88, pages 49–54. AAAI.

David DeVault and Matthew Stone. 2003. Domain
inference in incremental interpretation. InProceed-
ings of ICOS 4: Workshop on Inference in Computa-
tional Semantics, Nancy, France, September. INRIA
Lorraine.

Jonathan Ginzburg, Raquel Fernández, and David
Schlangen. 2007. Unifying self- and other-repair.
In Proceeding of DECALOG, the 11th International
Workshop on the Semantics and Pragmatics of Dia-
logue (SemDial07), Trento, Italy, June.

Anne Kilger and Wolfgang Finkler. 1995. Incremen-
tal generation for real-time applications. Technical
Report RR-95-11, DFKI, Saarbrücken, Germany.

Staffan Larsson and David Traum. 2000. Information
state and dialogue management in the TRINDI dia-
logue move engine toolkit.Natural Language Engi-
neering, pages 323–340.

Willem J.M. Levelt. 1989. Speaking. MIT Press,
Cambridge, USA.

Joakim Nivre. 2004. Incrementality in determinis-
tic dependency parsing. pages 50–57, Barcelona,
Spain, July.

Livia Polanyi. 1988. A formal model of the structure
of discourse.Journal of Pragmatics, 12:601–638.

Gabriel Skantze and David Schlangen. 2009. Incre-
mental dialogue processing in a micro-domain. In
Proceedings of the 12th Conference of the European
Chapter of the Association for Computational Lin-
guistics (EACL 2009), Athens, Greece, April.

Patrick Sturt and Vincenzo Lombardo. 2005. Process-
ing coordinated structures: Incrementality and con-
nectedness.Cognitive Science, 29:291–305.

D. Traum and P. Heeman. 1997. Utterance units in
spoken dialogue. In E. Maier, M. Mast, and S. Lu-
perFoy, editors,Dialogue Processing in Spoken Lan-
guage Systems, Lecture Notes in Artificial Intelli-
gence. Springer-Verlag.

Mats Wirén. 1992. Studies in Incremental Natural
Language Analysis. Ph.D. thesis, Linköping Uni-
versity, Linköping, Sweden.

S.J. Young, N.H. Russell, and J.H.S. Thornton. 1989.
Token passing: a conceptual model for con-
nected speech recognition systems. Technical re-
port CUED/FINFENG/TR 38, Cambridge Univer-
sity Engineering Department.

718


