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Abstract

Paraphrase evaluation is typically done ei-
ther manually or through indirect, task-
based evaluation. We introduce an in-
trinsic evaluation PARADIGM which mea-
sures the goodness of paraphrase col-
lections that are represented using syn-
chronous grammars. We formulate two
measures that evaluate these paraphrase
grammars using gold standard sentential
paraphrases drawn from a monolingual
parallel corpus. The first measure calcu-
lates how often a paraphrase grammar is
able to synchronously parse the sentence
pairs in the corpus. The second mea-
sure enumerates paraphrase rules from the
monolingual parallel corpus and calculates
the overlap between this reference para-
phrase collection and the paraphrase re-
source being evaluated. We demonstrate
the use of these evaluation metrics on para-
phrase collections derived from three dif-
ferent data types: multiple translations
of classic French novels, comparable sen-
tence pairs drawn from different newspa-
pers, and bilingual parallel corpora. We
show that PARADIGM correlates with hu-
man judgments more strongly than BLEU

on a task-based evaluation of paraphrase
quality.

1 Introduction

Paraphrases are useful in a wide range of natu-
ral language processing applications. A variety
of data-driven approaches have been proposed to
generate paraphrase resources (see Madnani and
Dorr (2010) for a survey of these methods). Few
objective metrics have been established to evalu-
ate these resources. Instead, paraphrases are typi-
cally evaluated using subjective manual evaluation
or through task-based evaluations.

Different researchers have used different crite-
ria for manual evaluations. For example, Barzilay
and McKeown (2001) evaluated their paraphrases
by asking judges whether paraphrases were “ap-
proximately conceptually equivalent.” Ibrahim
et al. (2003) asked judges whether their para-
phrases were “roughly interchangeable given the
genre.” Bannard and Callison-Burch (2005) re-
placed phrases with paraphrases in a number of
sentences and asked judges whether the substitu-
tions “preserved meaning and remained grammat-
ical.” The results of these subjective evaluations
are not easily reusable.

Other researchers have evaluated their para-
phrases through task-based evaluations. Lin and
Pantel (2001) measured their potential impact on
question-answering. Cohn and Lapata (2007)
evaluate their applicability in the text-to-text gen-
eration task of sentence compression. Zhao et al.
(2009) use them to perform sentence compression
and simplification and to compute sentence simi-
larity. Several researchers have demonstrated that
paraphrases can improve machine translation eval-
uation (c.f. Kauchak and Barzilay (2006), Zhou
et al. (2006), Madnani (2010) and Snover et al.
(2010)).

We introduce an automatic evaluation met-
ric called PARADIGM, PARAphrase DIagnostics
through Grammar Matching. This metric eval-
uates paraphrase collections that are represented
using synchronous grammars. Synchronous tree-
adjoining grammars (STAGs), synchronous tree
substitution grammars (STSGs), and synchronous
context free grammars (SCFGs) are popular for-
malisms for representing paraphrase rules (Dras,
1997; Cohn and Lapata, 2007; Madnani, 2010;
Ganitkevitch et al., 2011). We present two mea-
sures that evaluate these paraphrase grammars us-
ing gold standard sentential paraphrases drawn
from a monolingual parallel corpus, which have
been previously proposed as a good resource
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for paraphrase evaluation (Callison-Burch et al.,
2008; Cohn et al., 2008).

The first of our two proposed metrics calculates
how often a paraphrase grammar is able to syn-
chronously parse the sentence pairs in a test set.
The second measure enumerates paraphrase rules
from a monolingual parallel corpus and calculates
the overlap between this reference paraphrase col-
lection, and the paraphrase resource being evalu-
ated.

2 Related work and background

The most closely related work is ParaMetric
(Callison-Burch et al., 2008), which is a set of
objective measures for evaluating the quality of
phrase-based paraphrases. ParaMetric extracts a
set of gold-standard phrasal paraphrases from sen-
tential paraphrases that have been manually word-
aligned. The sentential paraphrases used in Para-
Metric were drawn from a data set originally cre-
ated to evaluate machine translation output using
the BLEU metric. Cohn et al. (2008) argue that
these sorts of monolingual parallel corpora are ap-
propriate for evaluating paraphrase systems, be-
cause they are naturally occurring sources of para-
phrases.

Callison-Burch et al. (2008) calculated three
types of metrics in ParaMetric. The manual word
alignments were used to calculate how well an
automatic paraphrasing technique is able to align
the paraphrases in a sentence pair. This measure
is limited to a class of paraphrasing techniques
that perform alignment (like MacCartney et al.
(2008)). Most methods produce a list of para-
phrases for a given input phrase. So Callison-
Burch et al. (2008) calculate two more gener-
ally applicable measures by comparing the para-
phrases in an automatically extracted resource to
gold standard paraphrases extracted via the align-
ments. These allow a lower-bound on precision
and relative recall to be calculated.

Liu et al. (2010) introduce the PEM metric as an
alternative to BLEU, since BLEU prefers iden-
tical paraphrases. PEM uses a second language
as a pivot to judge semantic equivalence. This re-
quires use of some bilingual data. Chen and Dolan
(2011) suggest using BLEU together with their
metric PINC, which uses n-grams to measure lex-
ical difference between paraphrases.

PARADIGM extends the ideas in ParaMetric
from lexical and phrasal paraphrasing techniques

to paraphrasing techniques that also generate syn-
tactic templates, such as Zhao et al. (2008), Cohn
and Lapata (2009), Madnani (2010) and Ganitke-
vitch et al. (2011). Instead of extracting gold stan-
dard paraphrases using techniques from phrase-
based machine translation, we use grammar ex-
traction techniques (Weese et al., 2011) to ex-
tract gold standard paraphrase grammar rules from
ParaMetric’s word-aligned sentential paraphrases.
Using these rules, we calculate the overlap be-
tween a gold standard paraphrase grammar and an
automatically generated paraphrase grammar.

Moreover, like ParaMetric, PARADIGM is able
to do further analysis on a restricted class of para-
phrasing models. In this case, PARADIGM evalu-
ates how well certain models are able to produce
synchronous parses of sentence pairs drawn from
monolingual parallel corpora. PARADIGM’s dif-
ferent metrics are explained in Section 4, but first
we give background on synchronous parsing and
synchronous grammars.

2.1 Synchronous parsing with SCFGs
Synchronous context-free grammars
An SCFG (Lewis and Stearns, 1968; Aho and
Ullman, 1972) is similar to a context-free gram-
mar, except that it generates pairs of strings
in correspondence. Each production rule in an
SCFG rewrites a non-terminal symbol as a pair of
phrases, which may have contain a mix of words
and non-terminals symbols. The grammar is syn-
chronous because both phrases in the pair must
have an identical set of non-terminals (though they
can come in different orders), and corresponding
non-terminals must be rewritten using the same
rule.

Much recent work in MT (and, by extension,
paraphrasing approaches that use MT machinery)
has been focused on choosing an appropriate set of
non-terminal symbols. The Hiero model (Chiang,
2007) used a single non-terminal symbolX . Other
approaches have read symbols from constituent
parses of the training data (Galley et al., 2004;
Galley et al., 2006; Zollmann and Venugopal,
2006). Labels based combinatory categorial gram-
mar (Steedman and Baldridge, 2011) have also
been used (Almaghout et al., 2010; Weese et al.,
2012).

Synchronous parsing
Wu (1997) introduced a parsing algorithm using
a variant of CKY. Dyer recently showed (2010)

193



a
n
d

h
im

im
p
e
a
c
h

tow
a
n
t

s
o
m
e

.d
o
w
n

s
te
p

toh
im

e
x
p
e
c
t

o
th
e
rs

.

resign

to

him

want

others

while

,

him

impeach

to

propose

people

some

D
T

NP
VB
P VB

PR
P

C
C N
N
S

VB
P

PR
P

VB PR
T

VP
VP

S
VP

S

NP
VP

VP

NP

S
VP

S

S

.

Figure 1: PARADIGM extracts lexical, phrasal and
syntactic paraphrases from parsed, word-aligned
sentence pairs.

that the average parse time can be significantly im-
proved by using a two-pass algorithm.

The question of whether a source-reference pair
is reachable under a model must be addressed in
end-to-end discriminative training in MT (Liang
et al., 2006a; Gimpel and Smith, 2012). Auli et
al. (2009) showed that only approximately 30% of
training pairs are reachable under a phrase-based
model. This result is confirmed by our results in
paraphrasing.

3 Paraphrase grammar extraction

Like ParaMetric, PARADIGM extracts gold stan-
dard paraphrases from word-aligned sentential
paraphrases. PARADIGM goes further by parsing
one of the two input sentences, and uses the parse
tree to extract syntactic paraphrase rules, follow-
ing recent advances in syntactic approaches to ma-
chine translation (like Galley et al. (2004), Zoll-
mann and Venugopal (2006), and others). Figure 1
shows an example of a parsed sentence pair. From
that pair it is possible to extract a wide variety
of non-identical paraphrases, which include lexi-
cal paraphrases (single word synonyms), phrasal
paraphrases, and syntactic paraphrases that in-
clude a mix of words and syntactic non-terminal

CC→ and while
VBP→ want propose
VBP→ expect want

DT→ some some people
S→ him to step down him to resign

VP→ step down resign
VP→ to step down to resign
VP→ want to impeach him propose to impeach him
VP→ want VP propose VP
VP→ want to impeach PRP propose to impeach PRP
VP→ VBP him to step down VBP him to resign

S→ PRP to step down PRP to resign

Figure 2: Four examples each of lexical, phrasal,
and syntactic paraphrases that can be extracted
from the sentence pair in Figure 1.

symbols. Figure 2 shows a set of four examples
for each type that can be extracted from Figure 1.

These rules are formulated as SCFG rules,
with a syntactic left-hand nonterminal symbol
and two English right-hand sides representing the
paraphrase. The examples above include non-
terminal symbols that represent whole syntac-
tic constituents. It is also possible to create
more complex non-terminal symbols that describe
CCG-like non-constituent phrases. For example,
we could extract a rule like

S/VP→ <NNS want him to, NNS expect him to>

Using constituents only, we are able to ex-
tract 45 paraphrase rules from Figure 1. Adding
CCG-style slashed constituents yields 66 addi-
tional rules.

4 PARADIGM: Evaluating paraphrase
grammars

By considering a paraphrase model as a syn-
chronous context-free grammar, we propose to
measure the model’s goodness using the following
criteria:

1. What percentage of sentential paraphrases
are reachable under the model? That is, given
a collection of sentence pairs (ai, bi) and an
SCFG G, where each pair of a and b are sen-
tential paraphrases, how many of the pairs are
in the language of G? We evaluate this by
producing a synchronous parse for the pairs,
as shown in Figure 3.

2. Given a collection of gold-standard para-
phrase rules, how many of those paraphrases
exist as rules in G? To calculate this, we
look at the overlap of grammars (described in
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Figure 3: We measure the goodness of paraphrase
grammars by determine how often they can be
used to synchronously parse gold-standard sen-
tential paraphrases. Note we do not require the
synchronous derivation to match a gold-standard
parse tree.

Section 4.2 below), examining different cate-
gories of rules and thresholding based on how
frequently the rule was used in the gold stan-
dard data.

These criteria correspond to properties that we
think are desirable in paraphrase models. They
also have the advantage that they do not depend
on human judgments and so can be calculated au-
tomatically.

4.1 Synchronous parse coverage

Paraphrase grammars should be able to explain
sentential paraphrases. For example, Figure
3 shows a sentence pair that is synchronously
parseable by one paraphrase grammar. In general,
we say that the more such sentence pairs that a
paraphrase grammar can synchronously parse, the
better it is.

The synchronous derivation allows us to draw
inferences about parts of the sentence pair that are
in correspondence; for instance, in Figure 3, vi-
olent unrest corresponds to riots and mohammad
corresponds to the islamic prophet.

4.2 Grammar overlap defined

We measure grammar overlap by comparing the
sets of production rules for two different gram-
mars. If the grammars contain rules that are equiv-
alent, the equivalent rules are in the grammars’
overlap.

We consider two types of overlapping, which
we will call strict and non-strict overlap. For strict
overlap, we say that two rules are equivalent if
they are identical, that is, if they have the same

left-hand side non-terminal symbol, their source
sides are identical strings, and their target sides are
identical strings. (This includes identical indexing
on non-terminal symbols on the right hand sides
of the rule.)

To calculate non-strict overlap, we ignore the
identities of non-terminal symbols in the left-hand
and right-hand sides of the rules. That is, two rules
are considered equivalent if they are identical after
all the non-terminal symbols have been replaced
by one equivalent symbol.

For example, in non-strict overlap, the syntactic
rule

NP → 〈N1 ’s N2; the N2 of N1〉
would match the Hiero rule

X → 〈X1 ’s X2; the X2 of X1〉
If we are considering two Hiero grammars,

strict and non-strict intersection are the same op-
eration since they only have on non-terminal X .

4.3 Precision lower bound and relative recall
Callison-Burch et al. (2008) use the notion of over-
lap between two paraphrase sets to define two met-
rics, precision lower bound and relative recall.
These are calculated the same way as standard
precision and recall. Relative recall is qualified
as “relative” because it is calculated on a poten-
tially incomplete set of gold standard paraphrases.
There may exist valid paraphrases that do not oc-
cur in that set. Similarly, only a lower bound on
precision can be calculated because the candidate
set may contain valid paraphrases that do not oc-
cur in the gold standard set.

5 Experiments

5.1 Data
We extracted paraphrase grammars from a vari-
ety of different data sources, including four collec-
tions of sentential paraphrases. These included:

• Multiple translation corpora that were
compiled by the Linguistics Data Consortium
(LDC) for the purposes of evaluating ma-
chine translation quality with the BLEU met-
ric. We collected eight LDC corpora that all
have multiple English translations.1

1LDC Catalog numbers LDC2002T01, LDC2005T05,
LDC2010T10, LDC2010T11, LDC2010T12, LDC2010T14,
LDC2010T17, and LDC2010T23.
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sentence total
Corpus pairs words

LDC Multiple Translations 83,284 2,254,707
Classic French Literature 75,106 682,978
MSR Paraphrase Corpus 5,801 219,492

ParaMetric 970 21,944

Table 1: Amount of English–English parallel data.
LDC data has 4 parallel translations per sentence.
Literature data is from Barzilay and McKeown
(2001). MSR data is from Quirk et al. (2004)
and Dolan et al. (2004). ParaMertic data is from
Callison-Burch et al. (2008).

• Classic French Literature that were trans-
lated by different translators, and which were
compiled by Barzilay and McKeown (2001).

• The MSR Paraphrase corpus which con-
sists of sentence pairs drawn from compara-
ble news articles drawn from different web
sites in the same date rate. The sentence pairs
were aligned heuristically aligned and then
manually judged to be paraphrases.

• The ParaMetric data which consists of 900
manually word-aligned sentence pairs col-
lected by Cohn et al. (2008). 300 sentence
pairs were drawn from each of the 3 above
sources. We use this to extract the gold stan-
dard paraphrase grammar.

The size of the data from each source is summa-
rized in Table 1.

For each dataset, after tokenizing and normaliz-
ing, we parsed one sentence in each English pair
using the Berkeley constituency parser (Liang et
al., 2006b). We then obtained word-level align-
ments, either using GIZA++ (Och and Ney, 2000)
or, in the case of ParaMetric, using human annota-
tions.

We used the Thrax grammar extractor (Weese
et al., 2011) to extract Hiero-style and syntactic
SCFGs from the paraphrase data. In the syntac-
tic setting we allowed labeling of rules with ei-
ther constituent labels or CCG-style slashed cat-
egories. The size of the extracted grammars is
shown in Table 2.

We also used version 0.2 of the SCFG-based
paraphrase collection known as the ParaPhrase
DataBase or PPDB (Ganitkevitch et al., 2013).
The PPDB paraphrases were extracted using the
pivoting technique (Bannard and Callison-Burch,

Grammar Rules
LDC Hiero 52,784,462
Lit. Hiero 3,288,546

MSR Hiero 2,456,513
ParaMetric Hiero 584,944

LDC Syntax 23,978,477
Lit. Syntax 715,154

MSR Syntax 406,115
ParaMetric Syntax 317,772
PPDB-v0.2-small 1,292,224
PPDB-v0.2-large 9,456,356

PPDB-v0.2-xl 46,592,161

Table 2: Size of various paraphrase grammars.

Grammar freq. ≥ 1 freq. ≥ 2
ParaMetric Syntax 317,772 21,709

LDC Hiero 5,840 (1.8%) 416 (1.9%)
Lit. Hiero 6,152 (1.9%) 359 (1.7%)

MSR Hiero 10,012 (3.2%) 315 (1.5%)
LDC Syntax 48,833 (15.3%) 7,748 (35.6%)
Lit. Syntax 14,431 (4.5%) 1,960 (9.0%)

MSR Syntax 21,197 (6.7%) 2,053 (9.5%)
PPDB-v0.2-small 15,831 (5.0%) 5,673 (26.1%)
PPDB-v0.2-large 31,277 (9.8%) 8,245 (37.9%)

PPDB-v0.2-xl 47,720 (15.0%) 10,049 (46.2%)

Table 3: Size of strict overlap (number of rules and
% of the gold standard) of each grammar with a
syntactic grammar derived from ParaMetric. freq.
≥ 2 means we first removed all rules that ap-
peared only once from the ParaMetric grammar.
The number in parentheses shows the percentage
of ParaMetric rules that are present in the overlap.

2005) on bilingual parallel corpora containing
over 42 million sentence pairs.

The PPDB release includes a tool for pruning
the grammar to a smaller size by retaining only
high-precision paraphrases. We include PPDB
grammars for several different pruning settings in
our analysis.

5.2 Experimental setup
We calculated our two metrics for each of the
grammars listed in Table 2.

To perform synchronous parsing, we used the
Joshua decoder (Post et al., 2013), which includes
an implementation of Dyer’s two-pass parsing al-
gorithm (2010). After splitting the LDC data into
10 equal pieces, we trained paraphrase models on
nine-tenths of the data and parsed the other tenth.

Grammars trained from other sources (the MSR
corpus, French literature domain, and PPDB) were
also evaluated on the held-out tenth of LDC data.
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Grammar freq. ≥ 1 freq. ≥ 2
ParaMetric Syntax 200,385 20,699

LDC Hiero 41,346 (20.6%) 5,323 (25.8%)
Lit. Hiero 36,873 (18.4%) 4,606 (22.3%)

MSR Hiero 58,970 (29.4%) 6,741 (32.6%)
LDC Syntax 37,231 (11.7%) 5,055 (24.5%)
Lit. Syntax 19,530 (9.7%) 3,121 (15.1%)

MSR Syntax 28,016 (14.0%) 3,564 (17.2%)
PPDB-v0.2-small 13,003 (6.5%) 3,661 (17.7%)
PPDB-v0.2-large 22,431 (11.2%) 4,837 (23.4%)

PPDB-v0.2-xl 31,294 (15.6%) 5,590 (27.0%)

Table 4: Size of non-strict overlap of each gram-
mar with the syntactic grammar derived from
ParaMetric. The number in parentheses shows the
percentage of ParaMetric rules that are present in
the overlap.

Grammar syntactic phrasal lexical
ParaMetric 238,646 73,320 5,806
LDCSyn 36,375 (15%) 8,806 (12%) 3,652 (62%)
MSRSyn 7,734 (3%) 11,254 (15%) 2,209 (38%)
PPDB-xl 40,822 (17%) 3,765 (5%) 3,142 (54%)

Table 5: Number of paraphrases of each type
in each grammar’s strict overlap with the syntac-
tic ParaMetric grammar. Numbers in parentheses
show the percentage of ParaMetric rules of each
type.

Note that the LDC data contains 4 independent
translations of each foreign sentence, giving 6 pos-
sible (unordered) paraphrase pairs. We evaluated
coverage in two ways (corresponding to the two
columns in Table 6): first, considering all possible
sentence pairs from the test data, how many were
able to be parsed?

Secondly, if we consider all the English sen-
tences that correspond to one foreign sentence,
how many foreign sentences had at least one pair
of English translations that could be parsed syn-
chronously?

For grammar overlap, we perform both strict
and non-strict calculations (see Section 4.2)
against a syntactic grammar derived from hand-
aligned ParaMetric data.

5.3 Grammar overlap results

In Table 5 we see a breakdown of the types of para-
phrases in the overlap for three of the models. Al-
though the PPDB-xl overlap is much larger than
the other two, about 80% of its rules are syntac-
tic transformations. The LDC and MSR models
have a much larger proportion of phrasal and lexi-
cal rules.

Next we will look at the grammar overlap num-
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Figure 4: Precision lower bound and relative recall
when overlapping different sizes of PPDB with the
syntactic ParaMetric grammar.

bers presented in Table 3 and Table 4.
Note the non-intuitive result that for some

grammars (notably PPDB), the non-strict overlap
is smaller than the strict overlap. This is because
rules with different non-terminals only count once
in the non-strict overlap; for example, in PPDB-
small,

NN→〈 answer ; reply 〉
VB→〈 answer ; reply 〉

count as separate entries when calculating strictly,
but when ignoring non-terminals, they count as
only one type of rule.

The fact that the non-strict overlaps are smaller
means that there must be many rules in PPDB that
are identical except for non-terminal labels.

5.4 Precision and recall results

Figure 4 shows relative recall and precision lower
bound calculated for various sizes of PPDB rela-
tive to the ParaMetric grammar. The x-axis rep-
resents the size of the grammar as we vary from
keeping only the most probable rules to including
less probable ones. Restricting to high probability
rules makes the grammar much smaller, resulting
in higher precision.

5.5 Synchronous parsing results

Table 6 shows the percentage of sentence pairs that
were reachable in a held-out portion of the LDC
multiple-translation data.

We find that a grammar trained on LDC data
vastly outperforms data from any other domain.
This is not surprising — we shouldn’t expect a
model trained on French literature to be able to
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Grammar % (all) % (any)
LDC Hiero 9.5 33.0
Lit. Hiero 1.8 9.6

MSR Hiero 1.7 9.2
LDC Syntax 9.1 30.2
Lit. Syntax 2.0 10.7

MSR Syntax 1.9 10.4
PM Syntax 1.7 9.8

PPDB-v0.2-small 1.8 3.3
PPDB-v0.2-large 2.5 4.5

PPDB-v0.2-xl 3.5 6.2

Table 6: Parse coverage on held-out LDC data.
The all column considers every possible sentential
paraphrase in the test set. The any column consid-
ers a sentence parsed if any of its paraphrases was
able to parsed.

handle some of the vocabulary found in news sto-
ries that were originally in Arabic or Chinese.

The PPDB data outperforms both French litera-
ture and MSR models if we look all possible sen-
tence pairs from test data (the column labeled “all”
in the table). However, when we consider whether
any pair from a set of 4 translations can be trans-
lated, the PPDB models do not do as well. This
implies that PPDB tends to be able to reach many
pairs from the same set of translations, but there
are many translations that it cannot handle at all.
By contrast, the literature- and MSR-trained mod-
els can reach at least one pair from 10% of the
test examples, even though the absolute number
of pairs they can reach is lower.

5.6 Effects of grammar size and choice of
syntactic labels

Table 2 shows that the PPDB-derived grammars
are much larger than the syntactic models derived
from other domains. It may seem surprising that
they should perform worse, but adding more rules
to the grammar just by varying non-terminal labels
isn’t likely to help overall parse coverage. This
suggests a new pruning method: keep only the top
k label variations for each rule type.

If we compare the syntactic models to the Hi-
ero models trained from the same data, we see
that their overall reachability performance is not
very different. This implies that paraphrases can
be annotated with linguistic information without
necessarily hurting their ability to explain partic-
ular sentence pairs. Contrast this result, with, for

example, those of Koehn et al. (2003), showing
that restricting translation models to only syntac-
tic phrases hurts overall translation performance.
The comparable performance between Hiero and
syntactic models seems to hold regardless of do-
main.

6 Correlation with human judgments

To validate PARADIGM, we calculated its correla-
tion with human judgments of paraphrase quality
on the sentence compression text-to-text genera-
tion task, which has been used to evaluate para-
phrase grammars in previous research (Cohn and
Lapata, 2007; Zhao et al., 2009; Ganitkevitch et
al., 2011; Napoles et al., 2011). We created sen-
tence compression systems for five of the para-
phrase grammars described in Section 5.1. We fol-
lowed the methodology outlined by Ganitkevitch
et al. (2011) and did the following:

• Each paraphrase grammar was augmented
with an appropriate set of rule-level features
that capture information pertinent to the task.
In this case, the paraphrase rules were given
two additional features that shows how the
number of words and characters changed af-
ter applying the rule.

• Similarly to how the weights of the mod-
els are set using minimum error rate training
in statistical machine translation, the weights
for each of the paraphrase grammars using
the PRO tuning method (Hopkins and May,
2011).

• Instead of optimizing to the BLEU metric, as
is done in machine translation, we optimized
to PRÉCIS, a metric developed for sentence
compression that adapts BLEU so that it in-
cludes a “verbosity penalty” (Ganitkevitch et
al., 2011) to encourage the compression sys-
tems to produce shorter output.

• We created a development set with sentence
compressions by selecting 1000 pairs of sen-
tences from the multiple translation corpus
where two English translations of the same
foreign sentences differed in each other by a
length ratio of 0.67–0.75.

• We decoded a test set of 1000 sentences us-
ing each of the grammars and its optimized
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weights with the Joshua decoder (Ganitke-
vitch et al., 2012). The selected in the same
fashion as the dev sentences, so each one had
a human-created reference compression.

We conducted a human evaluation to judge the
meaning and grammaticality of the sentence com-
pressions derived from each paraphrase grammar.
We presented workers on Mechanical Turk with
the input sentence to the compression sentence
(the long sentence), along with 5 shortened out-
puts from our compression systems. To ensure
that workers were producing reliable judgments
we also presented them with a positive control (a
reference compression written by a person) and a
negative controls (a compressed output that was
generated by randomly deleted words). We ex-
cluded judgments from workers who did not per-
form well on the positive and negative controls.

Meaning and grammaticality were scored on
5-point scales where 5 is best. These human
scores were averaged over 2000 judgments (1000
sentences x 2 annotators) for each system. The
systems’ outputs were then scored with BLEU,
PRÉCIS, and their paraphrase grammars were
scored PARADIGM’s relative recall and precision
lower-bound estimates. For each grammar, we
also calculated the average length of parseable
sentences.

We calculated the correlation between the hu-
man judgements and the automatic scores, using
Spearman’s rank correlation coefficient ρ. This
is methodology is the same that is used to quan-
tify the goodness of automatic evaluation metrics
in the machine translation literature (Przybocki et
al., 2008; Callison-Burch et al., 2010). The pos-
sible values of ρ range between 1 (where all sys-
tems are ranked in the same order) and −1 (where
the systems are ranked in the reverse order). Thus
an automatic evaluation metric with a higher abso-
lute value for ρ is making predictions that are more
similar to the human judgments than an automatic
evaluation metric with a lower absolute ρ.

Table 7 shows that our PARADIGM scores cor-
relate more highly with human judgments than ei-
ther BLEU or PRÉCIS for the 5 systems in our eval-
uation. This suggests that it may be a better predic-
tor of the goodness of paraphrase grammars than
MT metrics, when the paraphrase grammars are
used for text-to-text generation tasks.

MEANING GRAMMAR

BLEU -0.7 -0.1
PRÉCIS -0.6 +0.2
PINC +0.1 +0.4
PARADIGMprecision +0.6 +0.1
PARADIGMrecall +0.1 +0.4
PARADIGMavg−len -0.3 +0.4

Table 7: The correlation (Spearman’s ρ) of dif-
ferent automatic evaluation metrics with human
judgments of paraphrase quality for the text-to-
text generation task of sentence compression.

7 Summary

We have introduced two new metrics for evaluat-
ing paraphrase grammars, and looked at several
models from a variety of domains. Using these
metrics we can perform a variety of analyses about
SCFG-based paraphrase models:

• Automatically-extracted grammars can parse
a small fraction of held-out data (≤30%).
This is comparable to results in MT (Auli et
al., 2009).

• In-domain training data is necessary in or-
der to parse held-out data. A model trained
on newswire data parsed 30% of held-out
newswire sentence pairs, versus to <10% for
literature or parliamentary data.

• SCFGs with syntactic labels perform just as
well as simpler models with a single non-
terminal label.

• Automatically-extracted syntactic grammars
tend to have a reasonable overlap with gram-
mars derived from human-aligned data, in-
cluding more 45% of the gold-standard gram-
mar’s paraphrase rules that occurred at least
twice.

• We showed that PARADIGM more strongly
correlates with human judgments of the
meaning and grammaticality of paraphrases
produced by sentence compression systems
than standard automatic evaluation measures
like BLEU.

PARADIGM will help researchers developing
paraphrase resources to perform similar diagnos-
tics on their models, and quickly evaluate their
systems.
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