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Abstract

Parsing disfluent sentences is a challeng-
ing task which involves detecting disflu-
encies as well as identifying the syntactic
structure of the sentence. While there have
been several studies recently into solely
detecting disfluencies at a high perfor-
mance level, there has been relatively lit-
tle work into joint parsing and disfluency
detection that has reached that state-of-
the-art performance in disfluency detec-
tion. We improve upon recent work in this
joint task through the use of novel features
and learning cascades to produce a model
which performs at 82.6 F-score. It outper-
forms the previous best in disfluency de-
tection on two different evaluations.

1 Introduction

Disfluencies in speech occur for several reasons:
hesitations, unintentional mistakes or problems in
recalling a new object (Arnold et al., 2003; Merlo
and Mansur, 2004). Disfluencies are often de-
composed into three types: filled pauses (IJ) such
as “uh” or “huh”, discourse markers (DM) such
as “you know” and “I mean” and edited words
(reparandum) which are repeated or corrected by
the speaker (repair). The following sentence illus-
trates the three types:

I want a flight to Boston︸ ︷︷ ︸
Reparandum

uh︸︷︷︸
IJ

I mean︸ ︷︷ ︸
DM

to Denver︸ ︷︷ ︸
Repair

To date, there have been many studies on disflu-
ency detection (Hough and Purver, 2013; Rasooli
and Tetreault, 2013; Qian and Liu, 2013; Wang et
al., 2013) such as those based on TAGs and the
noisy channel model (e.g. Johnson and Charniak
(2004), Zhang et al. (2006), Georgila (2009), and
Zwarts and Johnson (2011)). High performance
disfluency detection methods can greatly enhance

the linguistic processing pipeline of a spoken dia-
logue system by first “cleaning” the speaker’s ut-
terance, making it easier for a parser to process
correctly. A joint parsing and disfluency detection
model can also speed up processing by merging
the disfluency and parsing steps into one. How-
ever, joint parsing and disfluency detection mod-
els, such as Lease and Johnson (2006), based
on these approaches have only achieved moder-
ate performance in the disfluency detection task.
Our aim in this paper is to show that a high perfor-
mance joint approach is viable.

We build on our previous work (Rasooli and
Tetreault, 2013) (henceforth RT13) to jointly
detect disfluencies while producing dependency
parses. While this model produces parses at a
very high accuracy, it does not perform as well as
the state-of-the-art in disfluency detection (Qian
and Liu, 2013) (henceforth QL13). In this pa-
per, we extend RT13 in two important ways: 1)
we show that by adding a set of novel features se-
lected specifically for disfluency detection we can
outperform the current state of the art in disfluency
detection in two evaluations1 and 2) we show that
by extending the architecture from two to six clas-
sifiers, we can drastically increase the speed and
reduce the memory usage of the model without a
loss in performance.

2 Non-monotonic Disfluency Parsing

In transition-based dependency parsing, a syntac-
tic tree is constructed by a set of stack and buffer
actions where the parser greedily selects an action
at each step until it reaches the end of the sentence
with an empty buffer and stack (Nivre, 2008). A
state in a transition-based system has a stack of
words, a buffer of unprocessed words and a set of
arcs that have been produced in the parser history.
The parser consists of a state (or a configuration)

1Honnibal and Johnson (2014) have a forthcoming paper
based on a similar idea but with a higher performance.
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which is manipulated by a set of actions. When an
action is made, the parser goes to a new state.

The arc-eager algorithm (Nivre, 2004) is a
transition-based algorithm for dependency pars-
ing. In the initial state of the algorithm, the buffer
contains all words in the order in which they ap-
pear in the sentence and the stack contains the arti-
ficial root token. The actions in arc-eager parsing
are left-arc (LA), right-arc (RA), reduce (R) and
shift (SH). LA removes the top word in the stack
by making it the dependent of the first word in the
buffer; RA shifts the first word in the buffer to the
stack by making it the dependent of the top stack
word; R pops the top stack word and SH pushes
the first buffer word into the stack.

The arc-eager algorithm is a monotonic parsing
algorithm, i.e. once an action is performed, subse-
quent actions should be consistent with it (Honni-
bal et al., 2013). In monotonic parsing, if a word
becomes a dependent of another word or acquires
a dependent, other actions shall not change those
dependencies that have been constructed for that
word in the action history. Disfluency removal is
an issue for monotonic parsing in that if an ac-
tion creates a dependency relation, the other ac-
tions cannot repair that dependency relation. The
main idea proposed by RT13 is to change the
original arc-eager algorithm to a non-monotonic
one so it is possible to repair a dependency tree
while detecting disfluencies by incorporating three
new actions (one for each disfluency type) into a
two-tiered classification process. The structure is
shown in Figure 1(a). In short, at each state the
parser first decides between the three new actions
and a parse action (C1). If the latter is selected, an-
other classifier (C2) is used to select the best parse
action as in normal arc eager parsing.

The three additional actions to the arc-eager al-
gorithm to facilitate disfluency detection are as
follows: 1) RP[i:j]: From the words outside the
buffer, remove words i to j from the sentence and
tag them as reparandum, delete all of their depen-
dencies and push all of their dependents onto the
stack. 2) IJ[i]: Remove the first i words from
the buffer (without adding any dependencies to
them) and tag them as interjection. 3) DM[i]:
Remove the first i words from the buffer (with-
out adding any dependencies) and tag them as dis-
course marker.

State

C1

Parse RP[i:j] IJ[i]DM[i]

C2

LA RA RSH

(a) A structure with two classifiers.

IJ[i]

C3

DM[i]

Parse

C5

C2

IJDM

C1 Other

C4 RP

C6

RLARA SH

RP[i:j]

State

(b) A structure with six classifiers.

Figure 1: Two kinds of cascades for disfluency
learning. Circles are classifiers and light-colored
blocks show the final decision by the system.

3 Model Improvements

To improve upon RT13, we first tried to learn all
actions jointly. Essentially, we added the three
new actions to the original arc-eager action set.
However, this method (henceforth M1) performed
poorly on the disfluency detection task. We be-
lieve this stems from a feature mismatch, i.e. some
of the features, such as rough copies, are only use-
ful for reparanda while some others are useful for
other actions. Speed is an additional issue. Since
for each state, there are many candidates for each
of the actions, the space of possible candidates
makes the parsing time potentially squared.

Learning Cascades One possible solution for
reducing the complexity of the inference is to for-
mulate and develop learning cascades where each
cascade is in charge of a subset of predictions with
its specific features. For this task, it is not es-
sential to always search for all possible phrases
because only a minority of cases in speech texts
are disfluent (Bortfeld et al., 2001). For address-
ing this problem, we propose M6, a new structure
for learning cascades, shown in Figure 1(b) with
a more complex structure while more efficient in
terms of speed and memory. In the new structure,
we do not always search for all possible phrases
which will lead to an expected linear time com-
plexity. The main processing overhead here is the
number of decisions to make by classifiers but this
is not as time-intensive as finding all candidate
phrases in all states.

Feature Templates RT13 use different feature
sets for the two classifiers: C2 uses the parse fea-
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tures promoted in Zhang and Nivre (2011, Table
1) and C1 uses features which are shown with
regular font in Figure 2. We show that one can
improve RT13 by adding new features to the C1
classifier which are more appropriate for detecting
reparanda (shown in bold in Figure 2). We call
this new model M2E, “E” for extended. In Figure
3, the features for each classifier in RT13, M2E,
M6 and M1 are described.

We introduce the following new features: LIC
looks at the number of common words between the
reparandum candidate and words in the buffer; e.g.
if the candidate is “to Boston” and the words in the
buffer are “to Denver”, LIC[1] is one and LIC[2]
is also one. In other words, LIC is an indicator
of a rough copy. The GPNG (post n-gram fea-
ture) allows us to model the fluency of the result-
ing sentence after an action is performed, without
explicitly going into it. It is the count of possible
n-grams around the buffer after performing the ac-
tion; e.g. if the candidate is a reparandum action,
this feature introduces the n-grams which will ap-
pear after this action. For example, if the sentence
is “I want a flight to Boston | to Denver” (where
| is the buffer boundary) and the candidate is “to
Boston” as reparandum, the sentence will look like
“I want a flight | to Denver” and then we can count
all possible n-grams (both lexicalized and unlexi-
calized) in the range i and j inside and outside the
buffer. GBPF is a collection of baseline parse fea-
tures from (Zhang and Nivre, 2011, Table 1).

The need for classifier specific features be-
comes more apparent in the M6 model. Each of
the classifiers uses a different set of features to op-
timize performance. For example, LIC features
are only useful for the sixth classifier while post
n-gram features are useful for C2, C3 and C6. For
the joint model we use the C1 features from M2B
and the C1 features from M6.

4 Experiments and Evaluation

We evaluate our new models, M2E and M6,
against prior work on two different test conditions.
In the first evaluation (Eval 1), we use the parsed
section of the Switchboard corpus (Godfrey et al.,
1992) with the train/dev/test splits from Johnson
and Charniak (2004) (JC04). All experimental set-
tings are the same as RT13. We compare our new
models against this prior work in terms of disflu-
ency detection performance and parsing accuracy.
In the second evaluation (Eval 2), we compare our

Abbr. Description
GS[i/j] First n Ws/POS outside β (n=1:i/j)
GB[i/j] First n Ws/POS inside β (n=1:i/j)
GL[i/j] Are n Ws/POS i/o β equal? (n=1:i/j)
GT[i] n last FGT; e.g. parse:la (n=1:i)
GTP[i] n last FGT e.g. parse (n=1:i)
GGT[i] n last FGT + POS of β0 (n=1:i)
GGTP[i] n last CGT + POS of β0 (n=1:i)
GN[i] (n+m)-gram of m/n POS i/o β (n,m=1:i)
GIC[i] # common Ws i/o β (n=1:i)
GNR[i] Rf. (n+m)-gram of m/n POS i/o β (n,m=1:i)
GPNG[i/j] PNGs from n/m Ws/POS i/o β (m,n:1:i/j)
GBPF Parse features (Zhang and Nivre, 2011)
LN[i,j] First n Ws/POS of the cand. (n=1:i/j)
LD Distance between the cand. and s0
LL[i,j] first n Ws/POS of rp and β equal? (n=1:i/j)
LIC[i] # common Ws for rp/repair (n=1:i)

Figure 2: Feature templates used in this paper and
their abbreviations. β: buffer, β0: first word in
the buffer, s0: top stack word, Ws: words, rp:
reparadnum, cand.: candidate phrase, PNGs: post
n-grams, FGT: fine-grained transitions and CGT:
coarse-grained transitions. Rf. n-gram: n-gram
from unremoved words in the state.

Classifier Features
M2 Features

C1 (RT13) GS[4/4], GB[4/4], GL[4/6], GT[5], GTP[5]
GGT[5], GGTP[5], GN[4], GNR[4], GIC[6]
LL[4/6], LD

C1 (M2E) RT13 ∪ (LIC[6], GBPF, GPNG[4/4]) - LD
C2 GBPF

M6 Features
C1 GBPF, GB[4/4], GL[4/6], GT[5], GTP[5]

GGT[5], GGTP[5], GN[4], GNR[4], GIC[6]
C2 GB[4/4], GT[5], GTP[5], GGT[5], GGTP[5]

GN[4], GNR[4], GPNG[4/4], LD, LN[24/24]
C3 GB[4/4], GT[5], GTP[5], GGT[5], GGTP[5]

GN[4], GNR[4], GPNG[4/4], LD, LN[12/12]
C4 GBPF, GS[4/6], GT[5], GTP[5], GGT[5]

GGTP[5], GN[4], GNR[4], GIC[13]
C5 GBPF
C6 GBPF, LL[4/6], GPNG[4/4]

LN[6/6], LD, LIC[13]
M1 Features: RT13 C1 features ∪ C2 features

Figure 3: Features for each model. M2E is the
same as RT13 with extended features (bold fea-
tures in Figure 2). M6 is the structure with six
classifiers. Other abbreviations are described in
Figure 2.

work against the current best disfluency detection
method (QL13) on the JC04 split as well as on a
10 fold cross-validation of the parsed section of
the Switchboard. We use gold POS tags for all
evaluations.

For all of the joint parsing models we use the
weighted averaged Perceptron which is the same
as averaged Perceptron (Collins, 2002) but with a
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loss weight of two for reparandum candidates as
done in prior work. The standard arc-eager parser
is first trained on a “cleaned” Switchboard corpus
(i.e. after removing disfluent words) with 3 train-
ing iterations. Next, it is updated by training it on
the real corpus with 3 additional iterations. For
the other classifiers, we use the same number of
iterations determined from the development set.

Eval 1 The disfluency detection and parse re-
sults on the test set are shown in Table 1 for the
four systems (M1, RT13, M2E and M6). The joint
model performs poorly on the disfluency detection
task, with an F-score of 41.5, and the prior work
performance which serves as our baseline (RT13)
has a performance of 81.4. The extended version
of this model (M2E) raises performance substan-
tially to 82.2. This shows the utility of training the
C1 classifier with additional features. Finally, the
M6 classifier is the top performing model at 82.6.

Disfluency Parse
Model Pr. Rec. F1 UAS F1
M1 27.4 85.8 41.5 60.2 64.6
RT13 85.1 77.9 81.4 88.1 87.6
M2E 88.1 77.0 82.2 88.1 87.6
M6 87.7 78.1 82.6 88.4 87.7

Table 1: Comparison of joint parsing and disflu-
ency detection methods. UAS is the unlabeled
parse accuracy score.

The upperbound for the parser attachment ac-
curacy (UAS) is 90.2 which basically means that
if we have gold standard disfluencies and remove
disfluent words from the sentence and then parse
the sentence with a regular parser, the UAS will
be 90.2. If we had used the regular parser to parse
the disfluent sentences, the UAS for correct words
would be 70.7. As seen in Table 1, the best parser
UAS is 88.4 (M6) which is very close to the up-
perbound, however RT13, M2E and M6 are nearly
indistinguishable in terms of parser performance.

Eval 2 To compare against QL13, we use the
second version of the publicly provided code and
modify it so it uses gold POS tags and retrain and
optimize it for the parsed section of the Switch-
board corpus (these are known as mrg files, and
are a subset of the section of the Switchboard cor-
pus used in QL13, known as dps files). Since their
system has parameters tuned for the dps Switch-
board corpus we retrained it for a fair comparison.
As in the reimplementation of RT13, we have eval-

uated the QL13 system with optimal number of
training iterations (10 iterations). As seen in Table
2, although the annotation in the mrg files is less
precise than in the dps files, M6 outperforms all
models on the JC04 split thus showing the power
of the new features and new classifier structure.

Model JC04 split xval
RT13 81.4 81.6
QL13 (optimized) 82.5 82.2
M2E 82.2 82.8
M6 82.6 82.7

Table 2: Disfluency detection results (F1 score) on
JC04 split and with cross-validation (xval)

To test for robustness of our model, we per-
form 10-fold cross validation after clustering files
based on their name alphabetic order and creating
10 data splits. As seen in Table 2, the top model
is actually M2E, nudging out M6 by 0.1. More
noticeable is the difference in performance over
QL13 which is now 0.6.

Speed and memory usage Based on our Java
implementation on a 64-bit 3GHz Intel CPU with
68GB of memory, the speed for M6 (36 ms/sent)
is 3.5 times faster than M2E (128 ms/sent) and 5.2
times faster than M1 (184 ms/sent) and it requires
half of the nonzero features overall compared to
M2E and one-ninth compared to M1.

5 Conclusion and Future Directions

In this paper, we build on our prior work by in-
troducing rich and novel features to better handle
the detection of reparandum and by introducing an
improved classifier structure to decrease the uncer-
tainty in decision-making and to improve parser
speed and accuracy. We could use early updating
(Collins and Roark, 2004) for learning the greedy
parser which is shown to be useful in greedy pars-
ing (Huang and Sagae, 2010). K-beam parsing is a
way to improve the model though at the expense of
speed. The main problem with k-beam parsers is
that it is complicated to combine classifier scores
from different classifiers. One possible solution
is to modify the three actions to work on just one
word per action, thus the system will run in com-
pletely linear time with one classifier and k-beam
parsing can be done by choosing better features
for the joint parser. A model similar to this idea is
designed by Honnibal and Johnson (2014).
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