@inproceedings{martinez-alonso-etal-2017-parsing,
title = "Parsing {U}niversal {D}ependencies without training",
author = "Mart{\'\i}nez Alonso, H{\'e}ctor and
Agi{\'c}, {\v{Z}}eljko and
Plank, Barbara and
S{\o}gaard, Anders",
editor = "Lapata, Mirella and
Blunsom, Phil and
Koller, Alexander",
booktitle = "Proceedings of the 15th Conference of the {E}uropean Chapter of the Association for Computational Linguistics: Volume 1, Long Papers",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/E17-1022",
pages = "230--240",
abstract = "We present UDP, the first training-free parser for Universal Dependencies (UD). Our algorithm is based on PageRank and a small set of specific dependency head rules. UDP features two-step decoding to guarantee that function words are attached as leaf nodes. The parser requires no training, and it is competitive with a delexicalized transfer system. UDP offers a linguistically sound unsupervised alternative to cross-lingual parsing for UD. The parser has very few parameters and distinctly robust to domain change across languages.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="martinez-alonso-etal-2017-parsing">
<titleInfo>
<title>Parsing Universal Dependencies without training</title>
</titleInfo>
<name type="personal">
<namePart type="given">Héctor</namePart>
<namePart type="family">Martínez Alonso</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Željko</namePart>
<namePart type="family">Agić</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="family">Plank</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anders</namePart>
<namePart type="family">Søgaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mirella</namePart>
<namePart type="family">Lapata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Phil</namePart>
<namePart type="family">Blunsom</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Koller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present UDP, the first training-free parser for Universal Dependencies (UD). Our algorithm is based on PageRank and a small set of specific dependency head rules. UDP features two-step decoding to guarantee that function words are attached as leaf nodes. The parser requires no training, and it is competitive with a delexicalized transfer system. UDP offers a linguistically sound unsupervised alternative to cross-lingual parsing for UD. The parser has very few parameters and distinctly robust to domain change across languages.</abstract>
<identifier type="citekey">martinez-alonso-etal-2017-parsing</identifier>
<location>
<url>https://aclanthology.org/E17-1022</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>230</start>
<end>240</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Parsing Universal Dependencies without training
%A Martínez Alonso, Héctor
%A Agić, Željko
%A Plank, Barbara
%A Søgaard, Anders
%Y Lapata, Mirella
%Y Blunsom, Phil
%Y Koller, Alexander
%S Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F martinez-alonso-etal-2017-parsing
%X We present UDP, the first training-free parser for Universal Dependencies (UD). Our algorithm is based on PageRank and a small set of specific dependency head rules. UDP features two-step decoding to guarantee that function words are attached as leaf nodes. The parser requires no training, and it is competitive with a delexicalized transfer system. UDP offers a linguistically sound unsupervised alternative to cross-lingual parsing for UD. The parser has very few parameters and distinctly robust to domain change across languages.
%U https://aclanthology.org/E17-1022
%P 230-240
Markdown (Informal)
[Parsing Universal Dependencies without training](https://aclanthology.org/E17-1022) (Martínez Alonso et al., EACL 2017)
ACL
- Héctor Martínez Alonso, Željko Agić, Barbara Plank, and Anders Søgaard. 2017. Parsing Universal Dependencies without training. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 230–240, Valencia, Spain. Association for Computational Linguistics.