@inproceedings{hough-schlangen-2017-joint,
title = "Joint, Incremental Disfluency Detection and Utterance Segmentation from Speech",
author = "Hough, Julian and
Schlangen, David",
editor = "Lapata, Mirella and
Blunsom, Phil and
Koller, Alexander",
booktitle = "Proceedings of the 15th Conference of the {E}uropean Chapter of the Association for Computational Linguistics: Volume 1, Long Papers",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/E17-1031",
pages = "326--336",
abstract = "We present the joint task of incremental disfluency detection and utterance segmentation and a simple deep learning system which performs it on transcripts and ASR results. We show how the constraints of the two tasks interact. Our joint-task system outperforms the equivalent individual task systems, provides competitive results and is suitable for future use in conversation agents in the psychiatric domain.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hough-schlangen-2017-joint">
<titleInfo>
<title>Joint, Incremental Disfluency Detection and Utterance Segmentation from Speech</title>
</titleInfo>
<name type="personal">
<namePart type="given">Julian</namePart>
<namePart type="family">Hough</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Schlangen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mirella</namePart>
<namePart type="family">Lapata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Phil</namePart>
<namePart type="family">Blunsom</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Koller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present the joint task of incremental disfluency detection and utterance segmentation and a simple deep learning system which performs it on transcripts and ASR results. We show how the constraints of the two tasks interact. Our joint-task system outperforms the equivalent individual task systems, provides competitive results and is suitable for future use in conversation agents in the psychiatric domain.</abstract>
<identifier type="citekey">hough-schlangen-2017-joint</identifier>
<location>
<url>https://aclanthology.org/E17-1031</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>326</start>
<end>336</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Joint, Incremental Disfluency Detection and Utterance Segmentation from Speech
%A Hough, Julian
%A Schlangen, David
%Y Lapata, Mirella
%Y Blunsom, Phil
%Y Koller, Alexander
%S Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F hough-schlangen-2017-joint
%X We present the joint task of incremental disfluency detection and utterance segmentation and a simple deep learning system which performs it on transcripts and ASR results. We show how the constraints of the two tasks interact. Our joint-task system outperforms the equivalent individual task systems, provides competitive results and is suitable for future use in conversation agents in the psychiatric domain.
%U https://aclanthology.org/E17-1031
%P 326-336
Markdown (Informal)
[Joint, Incremental Disfluency Detection and Utterance Segmentation from Speech](https://aclanthology.org/E17-1031) (Hough & Schlangen, EACL 2017)
ACL