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Abstract

Comparing NLP systems to select the best
one for a task of interest, such as named
entity recognition, is critical for practition-
ers and researchers. A rigorous approach
involves setting up a hypothesis testing
scenario using the performance of the sys-
tems on query documents. However, often
the hypothesis testing approach needs to
send a large number of document queries
to the systems, which can be problematic.
In this paper, we present an effective al-
ternative based on the multi-armed ban-
dit (MAB). We propose a hierarchical gen-
erative model to represent the uncertainty
in the performance measures of the com-
peting systems, to be used by Thompson
Sampling to solve the resulting MAB. Ex-
perimental results on both synthetic and
real data show that our approach requires
significantly fewer queries compared to
the standard benchmarking technique to
identify the best system according to F-
measure.

1 Introduction

F-measureAs new NLP systems are (continually)
introduced for a task of interest, such as named
entity recognition (NER), it is crucial for prac-
tioneers and researchers to select the best system.
These systems may be designed based on different
models and/or learning algorithms. For instance,
due to recent advancement in NER research, sev-
eral NER systems have been proposed and then
supported in APIs such as OpenNLP (Ingersoll
et al., 2013), Stanford NER (Finkel et al., 2005),
ANNIE (Cunningham et al., 2002) and Meaning
Cloud (MeaningCloud-LLC, 1998) to name a few.

Often, the competing NLP systems are bench-
marked according to their average performance
measure, e.g. F-measure capturing both Precision
and Recall, across a set of example documents.
Each document produces a single F-measure and
the true performance of the system is considered
to be the expected value across all possible doc-
uments from the domain. Performance on indi-
vidual documents correspond to samples from the
performance distribution of the system, and can
then be used to determine the best system (or set
of systems should the highest performing system
not be unique) using rigorous hypothesis testing.
However, this approach usually requires querying
each competing system with a large number of
documents, which can be problematic if either the
number of test documents is limited, or the sys-
tems are implemented as APIs by a third party and
performing each query incurs a cost.

In this paper, we present a statistically effective
method to identify the best system from a pool of
systems. Our approach requires significantly fewer
example documents to reach similar guarantees as
the traditional hypothesis testing set up, hence re-
ducing the cost and increasing the speed of infer-
ence. Inspired by the previous work (Scott, 2015;
Gabillon et al., 2012; Maron and Moore, 1993),
We formulate the benchmarking problem as a se-
quential decision process of choosing the best arm
as the results of new queried documents are re-
ceived. More specifically, our formulation is based
on the best arm identification in a multi-armed
bandit (MAB) decision process. This allows us to
adapt Thompson Sampling (Thompson, 1933) and
its variants (Russo, 2016) to efficiently solve the
resulting MAB problem.

A crucial difference between the MAB ap-
proach and the traditional hypothesis testing is that
it is a sequential testing process, instead of a static
testing process which forces the benchmarker to
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wait for a final answer at the end of an experi-
ment. As such, we need to model the uncertainty
regarding the estimated F-measure of each com-
peting system, and continually update it as each
new document is queried. We propose a novel hi-
erarchical model for this purpose, which is gener-
ally applicable to document-level evaluation tasks
based on F-measure. The inference in our model
is done using standard sampling techniques, such
as Gibbs sampling.

We analyse empirically the performance of our
approach versus the standard hypothesis testing
baselines on synthetic datasets as well as real data
for the tasks of sentiment classification and named
entity recognition. The empirical results confirm
that the number of query documents needed to
achieve a particular statistical significance level
with our approach is much lower than that required
by the hypothesis testing baselines.

2 Best Arm Selection in Multi-Armed
Bandit

Our aim is to identify the best system among a
finite set of systems based on the noisy sequen-
tial measurements of their quality. We formulate
this problem as the best arm selection in multi-
armed bandit. MAB is a sequential decision pro-
cess where at each time step n an arm an from
the collection of K slot machines is chosen and
played by the gambler. Each arm a ∈ {1, . . . ,K}
is associated with an unknown reward distribution
f(y|θa) from which the reward is generated when
the arm is pulled. In the best arm selection prob-
lem, the gambler’s goal is to select the arm which
has the highest expected reward.

In the common formulation of the MAB, the
gambler wants to maximise his cumulative re-
wards. Intuitively, maximising cumulative rewards
eventually leads to the selection of the best arm
since it is the optimal decision. However, (Bubeck
et al., 2009) gives a theoretical analysis that any
strategies for optimising cumulative reward is sub-
optimal in identifying the best performing arm.
To this end, several algorithms have been pro-
posed for the best arm selection e.g. (Maron and
Moore, 1993; Gabillon et al., 2012; Russo, 2016).
Although originally developed for maximising cu-
mulative rewards, (Chapelle and Li, 2011; Scott,
2015) provide extensive empirical evidence for the
practical success of the Thompson Sampling algo-
rithm for the best arm selection. In what follows,

we present Thompson Sampling (TS) and one of
its variants, called Pure Exploration TS (PETS),
designed specifically for the best arm selection.

2.1 Thompson Sampling

Let us denote by (a1, y1), . . . , (aT , yT ) the se-
quence of pulled arms and the revealed rewards,
at is the arm pulled at time step t and yt is its as-
sociated reward. Note that this sequence is con-
tinually growing as the experiment progresses and
new arms are pulled. Let f(y|θa) be the proba-
bility distribution to model the unknown reward
function of the arm a. Had we known the param-
eters of the reward functions, the best arm could
then be selected as

argmaxaEf(y|θa)[y] = argmaxa

∫
f(y|θa)ydy.

Let us denote the collection of all parameters
by Θ := (θ1, . . . ,θK). Assuming a prior over the
parameters π0(Θ), we take a Bayesian approach
and reason about the posterior of the parameters:

πT (Θ) =
π0(Θ)LT (Θ)∫

Θ′ π0(Θ′)LT (Θ′)dΘ′

where Θ is the parameter domain, and LT (Θ) is
the likelihood of the observed data {(at, yt)}T1

LT (Θ) :=
T∏
t=1

f(yt|θat).

The posterior probability that a particular arm a is
optimal (i.e. has the highest expected reward) is:

αT,a :=
∫
Θa

πT (Θ)dΘ

where Θa is the set of those parameter values un-
der which the arm a would be selected as the opti-
mal arm:

Θa := {Θ ∈ Θ|Ef(y|θa) = argmaxa′ Ef(y|θa′ )}

In Thompson Sampling the next arm to pull is
sampled according to the posterior probability of
the arm being optimal. That is, an arm a is se-
lected with probability αT,a. Efficient implemen-
tation of Thompson Sampling generates a sample
from αT,a indirectly by first generating a sample
Θ̂ from πn(Θ) and then selecting the next arm to
pull by argmaxaEf(y|θ̂a)[y].
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Algorithm 1 Pure Exploration TS (PETS)
Initialization: Pull each arm once
t = K
while termination condition is not met do

Θ̂ ∼ πt(Θ)
a← argmaxk Ef(y|θ̂k)[y]

r ∼ uniform(0, 1)
if r ≤ β then

Pull a and update the posterior πt+1(Θ)
else

b← a
while b = a do

Θ̂ ∼ πt(Θ)
b← argmaxk Ef(y|θ̂k)[y]

end while
Pull b and update the posterior πt+1(Θ)

end if
t← t+ 1

end while

2.2 Pure Exploration Thompson Sampling

Thompson sampling can perform poorly for the
best arm identification problem. The reason is that
once it discovers a particular arm is performing
well, it becomes overconfident and almost always
selects that arm in the future iterations. In case
that arm is not the best arm, it takes a long time
for the algorithm to divert from it. For example, if
αT,a = 90%, then the algorithm selects an arm
other than a on average on every 10 iterations,
which would make it significantly longer to get to
a point where αT ′,a′ = 95%, i.e. the point where
the algorithm terminates with confidence 95% in a
different arm a′.

Let αT := (αT,1, . . . , αT,K) be the vector
of arm probabilities to be optimal. Pure Explo-
ration Thompson Sampling (Russo, 2016) ad-
dresses the above deficiency of Thompson Sam-
pling by throwing away, with probability β, the
arm a sampled from αT . Instead, it samples an-
other arm b 6= a with the probability proportional
to αT,b. The exploration parameter β prevents the
algorithm from exclusively focusing on one arm.
Usually β is set to .5 but we empirically inves-
tigate other values for this parameter in §4. We
can revert to basic Thompson Sampling by setting
β = 1 in PETS. Similar to Thompson Sampling,
this arm selection method can be efficiently im-
plemented as shown in Algorithm 1. We terminate
the algorithm when it reaches a maximum number
of queries or when αT,a ≥ 1 − δ, where δ is the
confidence parameter provided in the input.

3 A Probabilistic Generative Model of
F-measure

In this section we present a novel hierarchical
Bayesian model for capturing the uncertainty over
systems’ F-measures, as the prediction outcome
on new query documents are received. We present
this model for F-measure, however, we note that it
can be extended for other performance measures
as well.

F-measure is defined as the harmonic mean of
the precision and recall:

F-measure :=
2

1
precision + 1

recall

precision :=
TP

TP + FP
, recall :=

TP

TP + FN

where (TP, FP, TN,FN) denote true posi-
tive, false positive, true negative, and false neg-
ative counts. These counts result from compar-
ing the predictions of a system with the ground
truth annotations, and they sum to the total
number of annotated data items N . We denote
the normalised version of the counts by rates
( ˆTP , F̂P , ˆTN, ˆFN), which are derived by divid-
ing the raw counts by N . Importantly, the rate
statistics are enough to calculate precision, recall,
and F-measure.

Instead of modelling the uncertainty over the F-
measure of a system directly, we model the un-
certainty over its rate statistics. Any distribution
over ( ˆTP , F̂P , ˆTN, ˆFN) then induces a distribu-
tion over F-measure. The benefit of working with
the rate statistics is that they relate more naturally
to the observed (TP, FP, TN, FN) counts, as es-
tablished in our generative model in the following.

More specifically, we assume a hierarchical
model to generate the rate statistics of the sys-
tems and the observed (TPd, FPd, TNd, FNd)
counts over a collection of documents d ∈ D.
For each system, we draw its rate statistics θk :=
( ˆTP k, F̂P k, ˆTNk, ˆFNk) from a Dirichlet prior.
To generate the counts statistics resulting from ap-
plying the system at on the document dt, we first
generate a document-specific rate vector µdt from
a Dirichlet distribution centred around θat . Note
that including explicit document-specific rates µdt
in the model (from which the binomial counts
are drawn) is necessary in order to allow for
sufficient variation in the observed error rates
across documents, due to the inherent differences
in difficulty of labelling different documents.1

1In other words, in order to model the observed vari-
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θ0

θk

k ∈ [1 . . .K]

t ∈ [1 . . . T ]

cdt

at

µdt

Figure 1: The graphical model for the probabilis-
tic generation of a system’s parameters θk and a
document’s counts cdt , as the selected system at
is applied onto the document dt at the time step t.
The observed quantities are shaded.

We then generate the observed counts cdt :=
(TPdt , FPdt , TNdt , FNdt) from the Bionomial
distribution with parameters µdt and Ndt , where
Ndt is the number data items in dt. In summary,
the generative model is as follows:

∀k ∈ [1..K] : θk ∼ Dirichlet(θ0, α0)
∀t ∈ [1..T ] : µdt ∼ Dirichlet(θat , α)

cdt ∼ Bionomial(µdt , Ndt)

where α0 and α are the concentration parameters,
which we set to 1 in our experiments in §4. Fig-
ure 1 depicts the graphical model.

For inference, the quantities of interest are the
unknown rates for the systems {θk}Kk=1. The
observed quantities are document-specific counts
{cdt}Tt=1, and we would like to marginalise out the
latent document-specific rate variables {µdt}Tt=1.
We resort to Gibbs sampling for inference in our
model. That is, we iteratively select a hidden vari-
able and sample a value from its posterior given all
the other variables are fixed to their current values.
In our experiments, we collect 1000 samples from
the posterior.2 Algorithm 2 depicts the sampling-
based inference for the posterior embedded in the
PETS algorithm for the best system identification.

F-measure is a frequently used evaluation mea-
sure, which can straightforwardly be parametrized
to allows for varying the importance of precision

ability in (TP,FP,TN,FN) counts, we had to use a Dirichlet-
Compound-Multinomial with shared Dirichlet prior rather
than a simple Multinomial with a shared Dirichlet Prior.

2We make use of the JAGS (Just Another Gibbs Sampler)
toolkit (Plummer, 2003) for inference in our model.

Algorithm 2 Identifying the best system
Require: K: Number of arms, J : Number of sam-

ples from posterior π(.), D: Document collection,
Fmeasure( ˆTP , ˆTN, F̂P , ˆFN) := 2T̂P

2T̂P+F̂P+ ˆFN
,

NextDoc(a,D): Next document for an arm a from D
1: for k ∈ [1..K] do
2: Dk ← NextDoc(k,D)

3: Sk ← {θ̃j |∀j ∈ [1..J ] : θ̃j
Gibbs∼ π(θj |Dk)}

4: end for
5: while termination condition is not met do
6: for k ∈ [1..K] do
7: fk ∼ {Fmeasure(θ̃)|θ̃ ∈ Sk}
8: end for
9: a← argmaxk fk

10: r ∼ uniform(0, 1)
11: b← a
12: if r > β then
13: while b = a do
14: for k ∈ [1..K] do
15: fk ∼ {Fmeasure(θ̃)|θ̃ ∈ Sk}
16: end for
17: b← argmaxk fk
18: end while
19: end if
20: Db ← Db ∪ NextDoc(b,D)

21: Sb ← {θ̃j |∀j ∈ [1..J ] : θ̃j
Gibbs∼ π(θj |Db)}

22: end while

versus recall:

Fβ-measure :=
2

β
precision + 1−β

recall

where β is a parameter trading off precision and
recall. We note that our approach can be ap-
plied straightforwardly to Fβ-measure to put more
weight on precision or recall where appropriate.

4 Empirical Results and Analysis

We designed two sets of experiments to exam-
ine the efficiency and performance of each algo-
rithm using synthetic data as well as real data for
sentence level sentiment classification and named
entity recognition tasks. With the synthetic data,
we analyse our probabilistic generative model for
F-measure in combination with the arm selection
algorithms. With the real data, we showcase the
statistical efficiency of our best system identifica-
tion approach compared to the standard hypothesis
testing approach (Demšar, 2006).

In the real data experiments, we define the “best
system” as the system with the highest F-measure
based on all documents in the collection. The “suc-
cess rate” in the NER/Sentiment tasks is then sim-
ply the percentage of times the best system is cor-
rectly identified (i.e. ranked highest when the sys-
tem selection algorithm is terminated) over mul-
tiple runs of the selection algorithm on random
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reorderings of the document collection. We em-
phasise that, in these experiments, we simulate a
scenario where the aim is to select the best system
with the minimum number of queries to showcase
the effectiveness of our approach.

4.1 Baselines

As baselines, we consider the minimum number
of documents needed by the standard statistical
power approach. The power of a binary hypothesis
testing is the probability that the test correctly re-
jects the null hypothesis (H0) when the alternative
hypothesis (H1) is true. In order to find a lower-
bound for the number of documents, we make use
of the power calculation for a paired T-Test.

The T-Test indicates whether or not the differ-
ence between two groups’ averages most likely re-
flects a “real” difference in the population from
which the groups were sampled. Assuming we
have two competing systems, we can set up a T-
Test to assess whether there is a meaningful differ-
ence between the F-measures of the two systems.

We assume an efficient experimental design
where the same number of (identical) documents
are sent to each system. Assuming a typical power
setting of 80% and a significance level of 5%, we
can calculate an “Oracle baseline” by making use
of the true effect size (the standardised difference
in mean performance) across the top two systems.3

Obviously this quantity would not be known a-
priori of running the experiment, hence the sample
size calculated based on this effect size provides a
lower-bound on the number of samples that ought
be needed4.

Across the systems, average performance on in-
dividual documents will vary due to variations in
the inherent difficulty of each document. In other
words, some documents are harder to label than
others. Thus we make use of a paired sample test
for the power calculation. Effect sizes are calcu-
lated as follows:

• For the synthetic experiments, the variation
in difficulty of the documents is not mod-
elled, so we calculate the effect size by sim-
ply using the parameters of the simulation as:

3For the power calculation, we use the following R
command power.t.test(delta=effect, sd=1,
sig.level=0.05, power=.8, type="paired",
alternative="one.sided").

4Note that the T-Test assumes Gaussian distributed data,
but the violation of this assumption is unlikely to greatly ef-
fect the sample size estimates.

µ1−µ2√
(σ2

1+σ2
2)

, where µ1 is the mean performance

on the best system and µ2 is the mean perfor-
mance on the second best system (likewise
for the standard deviations σ1 and σ2.

• For the experiments on real data, variation
will be document dependent and hence we
calculate the effect size as AV G(f1−f2)

STDEV (f1−f2) ,
where we directly measure the average and
standard deviation of the performance dif-
ferences between the top performing APIs
across the documents.

Since we are comparing many APIs at once, and
a priori of running the experiment we don’t know
which two systems are the best, we make use of
two settings for the confidence level (aka P-value
threshold) for the power calculation:

• Baseline2: Assume the top two systems are
known a priori and use the significance level
of 5% directly to produce a lower bound on
the number of iterations.

• BaselineK−1: Assume one system is new and
is being compared with all other k − 1 APIs.
We reduce the required significance level α
using a Bonferroni correction to be α/(k−1)
to take into account the k − 1 comparisons
being performed.

We stress that this is an unrealistic scenario in
which the effect size is known before running the
experiment. If this value is not known or needs to
be estimated before the experiment a much larger
value would be used, for example a value based on
the error threshold ε might be appropriate.

4.2 Synthetic Data Experiments
Datasets. For the synthetic data, we generate
the (TP, FP, TN, FN) counts of applying the
competing systems on hypothetical documents,
assuming that we know the systems’ true rates.
An important factor in the difficulty of the prob-
lem is the different in the Fscore of the top two
performing systems, which we denote by margin.
We consider three levels of problem difficulty
by considering the margin m ∈ {.01, .025, .05},
and for each margin we consider 5 configurations
whose competing systems have the specified
margin. Having the true ( ˆTP , F̂P , ˆTN, ˆFN)
rates for a competing system, the count statistics
for its results on hypothetical documents are
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margin .05 margin .025 margin .01
# queries success% # queries success% # queries success%

Baseline2 120 - 440 - 2725 -
BaselineK−1 185 - 680 - 4195 -
Hierarchical

+ Thomp. Samp. 22 ± 5 100 41 ± 6 96 66 ± 8 100
+ Pure Eexpl. TS 19 ± 3 100 27 ± 5 100 64 ± 9 96

Gaussian
+ Thomp. Samp. 513 ± 46 100 1169 ± 84 100 2000 ± 0 100
+ Pure Eexpl. TS 360 ± 33 100 848 ± 63 100 1965 ± 19 100

Table 1: Average number of queries across different margins. The number of systems is 5, and the maxi-
mum number of queries is set to 2000, and δ = 0.05.

then generated based on our generative model.
For each competing configuration, we repeat the
experiment multiple times in order to account for
the randomness inherent in the algorithms and the
generated documents. In different experiments,
we let the number of competing systems K be
{5, 10, 20}.

Margin and the number of systems. In this
experiment, we investigate the relation between
the margin and the number of documents queried
by each algorithm. Intuitively, as the margin
between the top performing systems decreases,
more queries are required to segregate the best
system among the top performing ones. We run
each algorithm for 500 times on the competing
configurations for each margin with K = 5. The
maximum number of queries allowed is 2000,
and the algorithm can terminate earlier as soon as
αT,a ≥ .95, i.e. δ = 0.05.

Table 1 summarises the average number of
queries and the success rates of TS and PETS in
combination with our hierarchical Bayesian model
for F-measure across different margins. We see
that the number of query documents increases as
the margin decreases. It is also worth noting that
PETS requires slightly smaller number of queries
than Thompson Sampling. Interestingly, the num-
ber of samples required by the hypothesis testing
baselines is much more than that required by the
TS/PETS combined with our hierarchical model.

We then ask the question whether the number
of competing systems is important. Table 2
summarises the average number of queries and the
success rate of each algorithm on the competing
configurations for the margin 0.05 for varying
number of systems K ∈ {5, 10, 20}. As seen, the

number of queries increases (sub)linearly with the
number of competing systems.

Hierarchical vs Gaussian. We compare our hier-
archical model for capturing the uncertainty over
F-measure with the Gaussian distribution. That is,
we associate a Gaussian distribution to each sys-
tem to model its posterior over the F-measure. The
use of the Gaussian distribution to model the mean
of sampled F-measures is motivated by the law of
large numbers. This approach directly models the
uncertainty of a system’s F-measure, as opposed to
our indirect modelling approach where posterior
distribution is constructed using the distribution of
(F̂P , ˆFN, ˆTP , ˆTN) rates.

Tables 1 and 2 show the average number of
queries and success rates for algorithms using
our hierarchical model vs the Gaussian distribu-
tion based model. The general trend is that using
the Gaussian model in TS/PETS requires signif-
icantly more queries compared to the hierarchi-
cal model as well as the baselines. Needing more
queries compared to the baselines highlights the
importance of choosing the right distribution for
capturing the uncertainty over the F-measure in
TS/PETS. Needing more queries compared to the
hierarchical variant is somewhat expected as the
synthetic data is generated according to the hierar-
chical model. However, we will see similar trends
in the experiments on the real data.

4.3 Sentiment Analysis

We consider the task of sentence level sentiment
prediction for medical documents. The aim is to
benchmark systems according to how well they
can predict the polarity of sentences contained in
a medical report, where each report corresponds
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K : 5 K : 10 K : 20
# queries success% # queries success% # queries success%

Baseline2 120 - 245 - 400 -
BaselineK−1 185 - 380 - 620 -
Hierarchical

+ Thomp. Samp. 22 ± 5 100 43 ± 6 96 70 ± 14 100
+ Pure Eexpl. TS 19 ± 3 100 35 ± 5 100 64 ± 13 100

Gaussian
+ Thomp. Samp. 513 ± 46 100 1019 ± 59 100 1404 ± 75 100
+ Pure Eexpl. TS 360 ± 33 100 661 ± 38 100 937 ± 62 100

Table 2: Average number of queries across different number of competing systems. The margin is 0.05,
and the maximum number of queries is set to 2000, and δ = 0.05.

to a patient.

Dataset. We make use of a biomedical cor-
pus (Martinez et al., 2015) consisting of CT
reports for fungal disease detection collected from
three hospitals. For each report, only the free text
section were used, which contains the radiolo-
gist’s understanding of the scan and the reason
for the requested scan as written by clinicians.
Every report was de-identified: any potentially
identifying information such as name, address,
age/birthday, gender were removed. There are a
total of 358 test documents, where the average
number of sentences per document is 23.

Competing Systems. We make use of a variant of
the coarse-to-fine model proposed in (McDonald
et al., 2007) for sentiment analysis. Briefly
speaking, the model couples the sentiment of the
sentences contained in a report with the overall
sentiment of the report. We train four versions
of the model, each of which corresponds to a
different training condition:

• Mfull: where the model is trained on the fully
annotated data DF , i.e. the data annotated at
both the sentence and report level.

• Mpartial: where the model is trained on both
DF and the partially annotated data DP in
which the sentence level annotation is miss-
ing but the reports are labeled.

• Munlab: where the model is trained onDF and
DU in which the annotation is missing at both
sentence and report level.

• Mall: where the model is trained on all of the
available data described above.

# queries % success
Baseline2 856 -
BaselineK−1 1320 -
Hierarchical
+ Thomp. Samp. 152 ± 36 100
+ Pure Eexpl. TS 123 ± 37 100
Gaussian
+ Thomp. Samp. 500 ± 0 100
+ Pure Eexpl. TS 500 ± 0 100

Table 3: Sentiment classification for biomedical
reports with 4 competing models. The maximum
number of queries is set to 500, and δ = 0.05.

We expect Mall to outperform the other models.
The aim is to analyse the behaviour of our best
system selection methods on real data compared
to the baselines.

Results. Table 3 presents the results. As seen
the number of queries needed for the TS/PETS
combined with the hierarchical model is much
less than that of the baselines and the Gaussian
variant.

4.4 Named Entity Recognition

In our second set of experiment, we attempt to
see how our frameworks and F1 models perform
using realistic data.

MASC Corpus. For benchmarking the NER
systems, we use the Manually Annotated Sub-
Corpus (MASC) (Ide et al., 2008) that includes 19
different domains. The corpus consists of approx-
imately 500K words of contemporary American
English written and spoken data drawn from the
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Open American National Corpus (OANC). This
corpus includes a wide variety of linguistic anno-
tations with a balanced selection of texts from a
broad range of genres/domains. The diversity of
the corpus will enable us to assess the robustness
of tools across different domains. The number of
documents in the MASC corpus is about 392.

Competing Systems. We evaluate the per-
formance of 5 popular NER systems implemented
as API in third party implementations:

• OpenNLP (Ingersoll et al., 2013): The
Apache OpenNLP library is a machine learn-
ing based toolkit for the text processing. It is
based on the maximum entropy and percep-
tron.

• Stanford NER (Finkel et al., 2005): It is based
on linear chain Conditional Random Field
(CRF) sequence models. It is part of the Stan-
ford CoreNLP, which is an integrated suite of
NLP tools in Java.

• ANNIE (Cunningham et al., 2002): ANNIE
uses gazetteer-based lookups and finite state
machines for entity identification and classifi-
cation. It can recognise persons, locations, or-
ganisations, dates, addresses and other named
entity types. ANNIE is part of the GATE
framework. It can be used as a Web Service
but it also provides its own interface for inde-
pendent use.

• Meaning Cloud (MeaningCloud-LLC, 1998):
It is based on a hybrid approach combining
machine learning with a rule based system.
The software is available as a cloud based so-
lution and on-premise as a plugin module for
the GATE framework.

• LingPipe (Alias-i, 2008): It is a set of Java
libraries developed by Alias-I for NLP. The
NER component is based on a 1st-order Hid-
den Markov Model with variable-length n-
grams as the feature set and uses the IOB an-
notation scheme for the output.

Results. Table 4 presents the results. As seen the
number of queries needed for the TS/PETS com-
bined with the hierarchical model is much less
than that of the baselines and the Gaussian vari-
ant.

# queries % success
Baseline2 125 -
BaselineK−1 240 -
Hierarchical
+ Thomp. Samp. 25 ± 6 99
+ Pure Eexpl. TS 24 ± 5 98
Gaussian
+ Thomp. Samp. 539 ± 3 100
+ Pure Eexpl. TS 412 ± 2 100

Table 4: Named entity recognition on MASC doc-
uments with 5 competing systems. The maximum
number of queries is set to 2000, and δ = .05.

5 Conclusion

We have presented a novel approach for bench-
marking NLP systems based on the multi-armed
bandit (MAB) problem. We have proposed a hier-
archical generative model to represent the uncer-
tainty in the performance measures of the compet-
ing systems, to be used by the Thompson Sam-
pling algorithm to solve the resulting MAB prob-
lem. Experimental results on both synthetic and
real data show that our approach requires sig-
nificantly fewer queries compared to the stan-
dard benchmarking technique to identify the best
system according to F-measure. Future work in-
cludes applying our approach to other NLP prob-
lems, particularly emerging document-level prob-
lem settings such document-wise machine transla-
tion.
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