@inproceedings{kann-etal-2017-neural,
    title = "Neural Multi-Source Morphological Reinflection",
    author = {Kann, Katharina  and
      Cotterell, Ryan  and
      Sch{\"u}tze, Hinrich},
    editor = "Lapata, Mirella  and
      Blunsom, Phil  and
      Koller, Alexander",
    booktitle = "Proceedings of the 15th Conference of the {E}uropean Chapter of the Association for Computational Linguistics: Volume 1, Long Papers",
    month = apr,
    year = "2017",
    address = "Valencia, Spain",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/E17-1049/",
    pages = "514--524",
    abstract = "We explore the task of multi-source morphological reinflection, which generalizes the standard, single-source version. The input consists of (i) a target tag and (ii) multiple pairs of source form and source tag for a lemma. The motivation is that it is beneficial to have access to more than one source form since different source forms can provide complementary information, e.g., different stems. We further present a novel extension to the encoder-decoder recurrent neural architecture, consisting of multiple encoders, to better solve the task. We show that our new architecture outperforms single-source reinflection models and publish our dataset for multi-source morphological reinflection to facilitate future research."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kann-etal-2017-neural">
    <titleInfo>
        <title>Neural Multi-Source Morphological Reinflection</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Katharina</namePart>
        <namePart type="family">Kann</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Ryan</namePart>
        <namePart type="family">Cotterell</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Hinrich</namePart>
        <namePart type="family">Schütze</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2017-04</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Mirella</namePart>
            <namePart type="family">Lapata</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Phil</namePart>
            <namePart type="family">Blunsom</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Alexander</namePart>
            <namePart type="family">Koller</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Valencia, Spain</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>We explore the task of multi-source morphological reinflection, which generalizes the standard, single-source version. The input consists of (i) a target tag and (ii) multiple pairs of source form and source tag for a lemma. The motivation is that it is beneficial to have access to more than one source form since different source forms can provide complementary information, e.g., different stems. We further present a novel extension to the encoder-decoder recurrent neural architecture, consisting of multiple encoders, to better solve the task. We show that our new architecture outperforms single-source reinflection models and publish our dataset for multi-source morphological reinflection to facilitate future research.</abstract>
    <identifier type="citekey">kann-etal-2017-neural</identifier>
    <location>
        <url>https://aclanthology.org/E17-1049/</url>
    </location>
    <part>
        <date>2017-04</date>
        <extent unit="page">
            <start>514</start>
            <end>524</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Neural Multi-Source Morphological Reinflection
%A Kann, Katharina
%A Cotterell, Ryan
%A Schütze, Hinrich
%Y Lapata, Mirella
%Y Blunsom, Phil
%Y Koller, Alexander
%S Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F kann-etal-2017-neural
%X We explore the task of multi-source morphological reinflection, which generalizes the standard, single-source version. The input consists of (i) a target tag and (ii) multiple pairs of source form and source tag for a lemma. The motivation is that it is beneficial to have access to more than one source form since different source forms can provide complementary information, e.g., different stems. We further present a novel extension to the encoder-decoder recurrent neural architecture, consisting of multiple encoders, to better solve the task. We show that our new architecture outperforms single-source reinflection models and publish our dataset for multi-source morphological reinflection to facilitate future research.
%U https://aclanthology.org/E17-1049/
%P 514-524
Markdown (Informal)
[Neural Multi-Source Morphological Reinflection](https://aclanthology.org/E17-1049/) (Kann et al., EACL 2017)
ACL
- Katharina Kann, Ryan Cotterell, and Hinrich Schütze. 2017. Neural Multi-Source Morphological Reinflection. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 514–524, Valencia, Spain. Association for Computational Linguistics.