@inproceedings{maheshwari-etal-2017-societal,
title = "A Societal Sentiment Analysis: Predicting the Values and Ethics of Individuals by Analysing Social Media Content",
author = {Maheshwari, Tushar and
Reganti, Aishwarya N. and
Gupta, Samiksha and
Jamatia, Anupam and
Kumar, Upendra and
Gamb{\"a}ck, Bj{\"o}rn and
Das, Amitava},
editor = "Lapata, Mirella and
Blunsom, Phil and
Koller, Alexander",
booktitle = "Proceedings of the 15th Conference of the {E}uropean Chapter of the Association for Computational Linguistics: Volume 1, Long Papers",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/E17-1069",
pages = "731--741",
abstract = "To find out how users{'} social media behaviour and language are related to their ethical practices, the paper investigates applying Schwartz{'} psycholinguistic model of societal sentiment to social media text. The analysis is based on corpora collected from user essays as well as social media (Facebook and Twitter). Several experiments were carried out on the corpora to classify the ethical values of users, incorporating Linguistic Inquiry Word Count analysis, n-grams, topic models, psycholinguistic lexica, speech-acts, and non-linguistic information, while applying a range of machine learners (Support Vector Machines, Logistic Regression, and Random Forests) to identify the best linguistic and non-linguistic features for automatic classification of values and ethics.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="maheshwari-etal-2017-societal">
<titleInfo>
<title>A Societal Sentiment Analysis: Predicting the Values and Ethics of Individuals by Analysing Social Media Content</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tushar</namePart>
<namePart type="family">Maheshwari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aishwarya</namePart>
<namePart type="given">N</namePart>
<namePart type="family">Reganti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Samiksha</namePart>
<namePart type="family">Gupta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anupam</namePart>
<namePart type="family">Jamatia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Upendra</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Björn</namePart>
<namePart type="family">Gambäck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amitava</namePart>
<namePart type="family">Das</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mirella</namePart>
<namePart type="family">Lapata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Phil</namePart>
<namePart type="family">Blunsom</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Koller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>To find out how users’ social media behaviour and language are related to their ethical practices, the paper investigates applying Schwartz’ psycholinguistic model of societal sentiment to social media text. The analysis is based on corpora collected from user essays as well as social media (Facebook and Twitter). Several experiments were carried out on the corpora to classify the ethical values of users, incorporating Linguistic Inquiry Word Count analysis, n-grams, topic models, psycholinguistic lexica, speech-acts, and non-linguistic information, while applying a range of machine learners (Support Vector Machines, Logistic Regression, and Random Forests) to identify the best linguistic and non-linguistic features for automatic classification of values and ethics.</abstract>
<identifier type="citekey">maheshwari-etal-2017-societal</identifier>
<location>
<url>https://aclanthology.org/E17-1069</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>731</start>
<end>741</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Societal Sentiment Analysis: Predicting the Values and Ethics of Individuals by Analysing Social Media Content
%A Maheshwari, Tushar
%A Reganti, Aishwarya N.
%A Gupta, Samiksha
%A Jamatia, Anupam
%A Kumar, Upendra
%A Gambäck, Björn
%A Das, Amitava
%Y Lapata, Mirella
%Y Blunsom, Phil
%Y Koller, Alexander
%S Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F maheshwari-etal-2017-societal
%X To find out how users’ social media behaviour and language are related to their ethical practices, the paper investigates applying Schwartz’ psycholinguistic model of societal sentiment to social media text. The analysis is based on corpora collected from user essays as well as social media (Facebook and Twitter). Several experiments were carried out on the corpora to classify the ethical values of users, incorporating Linguistic Inquiry Word Count analysis, n-grams, topic models, psycholinguistic lexica, speech-acts, and non-linguistic information, while applying a range of machine learners (Support Vector Machines, Logistic Regression, and Random Forests) to identify the best linguistic and non-linguistic features for automatic classification of values and ethics.
%U https://aclanthology.org/E17-1069
%P 731-741
Markdown (Informal)
[A Societal Sentiment Analysis: Predicting the Values and Ethics of Individuals by Analysing Social Media Content](https://aclanthology.org/E17-1069) (Maheshwari et al., EACL 2017)
ACL
- Tushar Maheshwari, Aishwarya N. Reganti, Samiksha Gupta, Anupam Jamatia, Upendra Kumar, Björn Gambäck, and Amitava Das. 2017. A Societal Sentiment Analysis: Predicting the Values and Ethics of Individuals by Analysing Social Media Content. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 731–741, Valencia, Spain. Association for Computational Linguistics.