@inproceedings{schutze-2017-nonsymbolic,
title = "Nonsymbolic Text Representation",
author = {Sch{\"u}tze, Hinrich},
editor = "Lapata, Mirella and
Blunsom, Phil and
Koller, Alexander",
booktitle = "Proceedings of the 15th Conference of the {E}uropean Chapter of the Association for Computational Linguistics: Volume 1, Long Papers",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/E17-1074/",
pages = "785--796",
abstract = "We introduce the first generic text representation model that is completely nonsymbolic, i.e., it does not require the availability of a segmentation or tokenization method that attempts to identify words or other symbolic units in text. This applies to training the parameters of the model on a training corpus as well as to applying it when computing the representation of a new text. We show that our model performs better than prior work on an information extraction and a text denoising task."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="schutze-2017-nonsymbolic">
<titleInfo>
<title>Nonsymbolic Text Representation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hinrich</namePart>
<namePart type="family">Schütze</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mirella</namePart>
<namePart type="family">Lapata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Phil</namePart>
<namePart type="family">Blunsom</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Koller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We introduce the first generic text representation model that is completely nonsymbolic, i.e., it does not require the availability of a segmentation or tokenization method that attempts to identify words or other symbolic units in text. This applies to training the parameters of the model on a training corpus as well as to applying it when computing the representation of a new text. We show that our model performs better than prior work on an information extraction and a text denoising task.</abstract>
<identifier type="citekey">schutze-2017-nonsymbolic</identifier>
<location>
<url>https://aclanthology.org/E17-1074/</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>785</start>
<end>796</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Nonsymbolic Text Representation
%A Schütze, Hinrich
%Y Lapata, Mirella
%Y Blunsom, Phil
%Y Koller, Alexander
%S Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F schutze-2017-nonsymbolic
%X We introduce the first generic text representation model that is completely nonsymbolic, i.e., it does not require the availability of a segmentation or tokenization method that attempts to identify words or other symbolic units in text. This applies to training the parameters of the model on a training corpus as well as to applying it when computing the representation of a new text. We show that our model performs better than prior work on an information extraction and a text denoising task.
%U https://aclanthology.org/E17-1074/
%P 785-796
Markdown (Informal)
[Nonsymbolic Text Representation](https://aclanthology.org/E17-1074/) (Schütze, EACL 2017)
ACL
- Hinrich Schütze. 2017. Nonsymbolic Text Representation. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 785–796, Valencia, Spain. Association for Computational Linguistics.