@inproceedings{duong-etal-2017-multilingual,
title = "Multilingual Training of Crosslingual Word Embeddings",
author = "Duong, Long and
Kanayama, Hiroshi and
Ma, Tengfei and
Bird, Steven and
Cohn, Trevor",
editor = "Lapata, Mirella and
Blunsom, Phil and
Koller, Alexander",
booktitle = "Proceedings of the 15th Conference of the {E}uropean Chapter of the Association for Computational Linguistics: Volume 1, Long Papers",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/E17-1084/",
pages = "894--904",
abstract = "Crosslingual word embeddings represent lexical items from different languages using the same vector space, enabling crosslingual transfer. Most prior work constructs embeddings for a pair of languages, with English on one side. We investigate methods for building high quality crosslingual word embeddings for many languages in a unified vector space. In this way, we can exploit and combine strength of many languages. We obtained high performance on bilingual lexicon induction, monolingual similarity and crosslingual document classification tasks."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="duong-etal-2017-multilingual">
<titleInfo>
<title>Multilingual Training of Crosslingual Word Embeddings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Long</namePart>
<namePart type="family">Duong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hiroshi</namePart>
<namePart type="family">Kanayama</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tengfei</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bird</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mirella</namePart>
<namePart type="family">Lapata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Phil</namePart>
<namePart type="family">Blunsom</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Koller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Crosslingual word embeddings represent lexical items from different languages using the same vector space, enabling crosslingual transfer. Most prior work constructs embeddings for a pair of languages, with English on one side. We investigate methods for building high quality crosslingual word embeddings for many languages in a unified vector space. In this way, we can exploit and combine strength of many languages. We obtained high performance on bilingual lexicon induction, monolingual similarity and crosslingual document classification tasks.</abstract>
<identifier type="citekey">duong-etal-2017-multilingual</identifier>
<location>
<url>https://aclanthology.org/E17-1084/</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>894</start>
<end>904</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multilingual Training of Crosslingual Word Embeddings
%A Duong, Long
%A Kanayama, Hiroshi
%A Ma, Tengfei
%A Bird, Steven
%A Cohn, Trevor
%Y Lapata, Mirella
%Y Blunsom, Phil
%Y Koller, Alexander
%S Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F duong-etal-2017-multilingual
%X Crosslingual word embeddings represent lexical items from different languages using the same vector space, enabling crosslingual transfer. Most prior work constructs embeddings for a pair of languages, with English on one side. We investigate methods for building high quality crosslingual word embeddings for many languages in a unified vector space. In this way, we can exploit and combine strength of many languages. We obtained high performance on bilingual lexicon induction, monolingual similarity and crosslingual document classification tasks.
%U https://aclanthology.org/E17-1084/
%P 894-904
Markdown (Informal)
[Multilingual Training of Crosslingual Word Embeddings](https://aclanthology.org/E17-1084/) (Duong et al., EACL 2017)
ACL
- Long Duong, Hiroshi Kanayama, Tengfei Ma, Steven Bird, and Trevor Cohn. 2017. Multilingual Training of Crosslingual Word Embeddings. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 894–904, Valencia, Spain. Association for Computational Linguistics.