@inproceedings{pu-etal-2017-consistent,
title = "Consistent Translation of Repeated Nouns using Syntactic and Semantic Cues",
author = "Pu, Xiao and
Mascarell, Laura and
Popescu-Belis, Andrei",
editor = "Lapata, Mirella and
Blunsom, Phil and
Koller, Alexander",
booktitle = "Proceedings of the 15th Conference of the {E}uropean Chapter of the Association for Computational Linguistics: Volume 1, Long Papers",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/E17-1089/",
pages = "948--957",
abstract = "We propose a method to decide whether two occurrences of the same noun in a source text should be translated consistently, i.e. using the same noun in the target text as well. We train and test classifiers that predict consistent translations based on lexical, syntactic, and semantic features. We first evaluate the accuracy of our classifiers intrinsically, in terms of the accuracy of consistency predictions, over a subset of the UN Corpus. Then, we also evaluate them in combination with phrase-based statistical MT systems for Chinese-to-English and German-to-English. We compare the automatic post-editing of noun translations with the re-ranking of the translation hypotheses based on the classifiers' output, and also use these methods in combination. This improves over the baseline and closes up to 50{\%} of the gap in BLEU scores between the baseline and an oracle classifier."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pu-etal-2017-consistent">
<titleInfo>
<title>Consistent Translation of Repeated Nouns using Syntactic and Semantic Cues</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiao</namePart>
<namePart type="family">Pu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laura</namePart>
<namePart type="family">Mascarell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrei</namePart>
<namePart type="family">Popescu-Belis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mirella</namePart>
<namePart type="family">Lapata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Phil</namePart>
<namePart type="family">Blunsom</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Koller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose a method to decide whether two occurrences of the same noun in a source text should be translated consistently, i.e. using the same noun in the target text as well. We train and test classifiers that predict consistent translations based on lexical, syntactic, and semantic features. We first evaluate the accuracy of our classifiers intrinsically, in terms of the accuracy of consistency predictions, over a subset of the UN Corpus. Then, we also evaluate them in combination with phrase-based statistical MT systems for Chinese-to-English and German-to-English. We compare the automatic post-editing of noun translations with the re-ranking of the translation hypotheses based on the classifiers’ output, and also use these methods in combination. This improves over the baseline and closes up to 50% of the gap in BLEU scores between the baseline and an oracle classifier.</abstract>
<identifier type="citekey">pu-etal-2017-consistent</identifier>
<location>
<url>https://aclanthology.org/E17-1089/</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>948</start>
<end>957</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Consistent Translation of Repeated Nouns using Syntactic and Semantic Cues
%A Pu, Xiao
%A Mascarell, Laura
%A Popescu-Belis, Andrei
%Y Lapata, Mirella
%Y Blunsom, Phil
%Y Koller, Alexander
%S Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F pu-etal-2017-consistent
%X We propose a method to decide whether two occurrences of the same noun in a source text should be translated consistently, i.e. using the same noun in the target text as well. We train and test classifiers that predict consistent translations based on lexical, syntactic, and semantic features. We first evaluate the accuracy of our classifiers intrinsically, in terms of the accuracy of consistency predictions, over a subset of the UN Corpus. Then, we also evaluate them in combination with phrase-based statistical MT systems for Chinese-to-English and German-to-English. We compare the automatic post-editing of noun translations with the re-ranking of the translation hypotheses based on the classifiers’ output, and also use these methods in combination. This improves over the baseline and closes up to 50% of the gap in BLEU scores between the baseline and an oracle classifier.
%U https://aclanthology.org/E17-1089/
%P 948-957
Markdown (Informal)
[Consistent Translation of Repeated Nouns using Syntactic and Semantic Cues](https://aclanthology.org/E17-1089/) (Pu et al., EACL 2017)
ACL